Frédéric Stauffer, Philipp Holzer, Carlos García-Echeverría
{"title":"阻断肿瘤细胞中PI3K/PKB通路。","authors":"Frédéric Stauffer, Philipp Holzer, Carlos García-Echeverría","doi":"10.2174/1568011054866937","DOIUrl":null,"url":null,"abstract":"<p><p>A substantial number of experimental and epidemiological studies support an important role for the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) pathway in the biology of human cancers. Components of this signaling cascade have been found to be deregulated in a wide range of solid tumors and hematologic malignancies, and extensive anti-cancer therapeutic programs are now devoted to the identification of agents that specifically block this molecular pathway. This article focuses on the current knowledge of the alterations of the PI3K/PKB pathway in cancer cells and ongoing drug discovery efforts to therapeutically target it. Particular emphasis is placed on medicinal chemistry activities to identify and develop compounds able to modulate the kinase activity of its main molecular components.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 5","pages":"449-62"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011054866937","citationCount":"38","resultStr":"{\"title\":\"Blocking the PI3K/PKB pathway in tumor cells.\",\"authors\":\"Frédéric Stauffer, Philipp Holzer, Carlos García-Echeverría\",\"doi\":\"10.2174/1568011054866937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A substantial number of experimental and epidemiological studies support an important role for the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) pathway in the biology of human cancers. Components of this signaling cascade have been found to be deregulated in a wide range of solid tumors and hematologic malignancies, and extensive anti-cancer therapeutic programs are now devoted to the identification of agents that specifically block this molecular pathway. This article focuses on the current knowledge of the alterations of the PI3K/PKB pathway in cancer cells and ongoing drug discovery efforts to therapeutically target it. Particular emphasis is placed on medicinal chemistry activities to identify and develop compounds able to modulate the kinase activity of its main molecular components.</p>\",\"PeriodicalId\":10914,\"journal\":{\"name\":\"Current medicinal chemistry. Anti-cancer agents\",\"volume\":\"5 5\",\"pages\":\"449-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1568011054866937\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry. Anti-cancer agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1568011054866937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry. Anti-cancer agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1568011054866937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A substantial number of experimental and epidemiological studies support an important role for the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) pathway in the biology of human cancers. Components of this signaling cascade have been found to be deregulated in a wide range of solid tumors and hematologic malignancies, and extensive anti-cancer therapeutic programs are now devoted to the identification of agents that specifically block this molecular pathway. This article focuses on the current knowledge of the alterations of the PI3K/PKB pathway in cancer cells and ongoing drug discovery efforts to therapeutically target it. Particular emphasis is placed on medicinal chemistry activities to identify and develop compounds able to modulate the kinase activity of its main molecular components.