嗜热四膜虫内臂动力蛋白重链编码基因突变导致轴突对Ca2+的超敏反应。

Siming Liu, Todd Hennessey, Scott Rankin, David G Pennock
{"title":"嗜热四膜虫内臂动力蛋白重链编码基因突变导致轴突对Ca2+的超敏反应。","authors":"Siming Liu,&nbsp;Todd Hennessey,&nbsp;Scott Rankin,&nbsp;David G Pennock","doi":"10.1002/cm.20091","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium-dependent ciliary reversals are seen in ciliated protozoans such as Tetrahymena in response to depolarizing stimuli, but the axonemal mechanisms responsible for this response are not well understood. The model is that the outer arm dyneins (OADs) control the beating frequency while the inner arm dyneins (IADs) regulate ciliary waveform. Since ciliary reversal is a type of waveform change, the model would predict that IAD mutations could affect ciliary reversal. We have used gene disruption techniques to generate several behavioral mutants of Tetrahymena with functional disruptions of various IADs. One such mutant, called KO-6, is missing I1 (the two-headed IAD) and is unable to show ciliary reversals in response to any stimuli due to a loss of axonemal Ca2+ sensitivity [Eur J Cell Biol 80 (2001) 486-497; Cell Motil Cytoskeleton 53 (2002) 281-288.]. In contrast, disruption of 3 one-headed IADs [Liu et al., Cell Motil Cytoskeleton 59 (2004), 201-214] produced mutants, which showed over-responsiveness in bioassays measuring either their depolarization-induced avoiding reactions (AR) in Na+ and Ba2+ solutions or their duration of backward swimming (continuous ciliary reversal or CCR) in K+ solutions. Detergent-extracted and reactivated mutants also showed increased probabilities of CCR at lower Ca2+ concentrations suggesting that the behavioral over-responsiveness of these three mutants in vivo is due to increased axonemal Ca2+ sensitivity. Our data suggest the possibility that the one-headed IADs and the two-headed IAD act antagonistically in vivo and that loss of any one of the one-headed IADs leads to behavioral over-responsiveness due to less resistance to I1-induced reversals.</p>","PeriodicalId":9675,"journal":{"name":"Cell motility and the cytoskeleton","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cm.20091","citationCount":"7","resultStr":"{\"title\":\"Mutations in genes encoding inner arm dynein heavy chains in Tetrahymena thermophila lead to axonemal hypersensitivity to Ca2+.\",\"authors\":\"Siming Liu,&nbsp;Todd Hennessey,&nbsp;Scott Rankin,&nbsp;David G Pennock\",\"doi\":\"10.1002/cm.20091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Calcium-dependent ciliary reversals are seen in ciliated protozoans such as Tetrahymena in response to depolarizing stimuli, but the axonemal mechanisms responsible for this response are not well understood. The model is that the outer arm dyneins (OADs) control the beating frequency while the inner arm dyneins (IADs) regulate ciliary waveform. Since ciliary reversal is a type of waveform change, the model would predict that IAD mutations could affect ciliary reversal. We have used gene disruption techniques to generate several behavioral mutants of Tetrahymena with functional disruptions of various IADs. One such mutant, called KO-6, is missing I1 (the two-headed IAD) and is unable to show ciliary reversals in response to any stimuli due to a loss of axonemal Ca2+ sensitivity [Eur J Cell Biol 80 (2001) 486-497; Cell Motil Cytoskeleton 53 (2002) 281-288.]. In contrast, disruption of 3 one-headed IADs [Liu et al., Cell Motil Cytoskeleton 59 (2004), 201-214] produced mutants, which showed over-responsiveness in bioassays measuring either their depolarization-induced avoiding reactions (AR) in Na+ and Ba2+ solutions or their duration of backward swimming (continuous ciliary reversal or CCR) in K+ solutions. Detergent-extracted and reactivated mutants also showed increased probabilities of CCR at lower Ca2+ concentrations suggesting that the behavioral over-responsiveness of these three mutants in vivo is due to increased axonemal Ca2+ sensitivity. Our data suggest the possibility that the one-headed IADs and the two-headed IAD act antagonistically in vivo and that loss of any one of the one-headed IADs leads to behavioral over-responsiveness due to less resistance to I1-induced reversals.</p>\",\"PeriodicalId\":9675,\"journal\":{\"name\":\"Cell motility and the cytoskeleton\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cm.20091\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell motility and the cytoskeleton\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cm.20091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell motility and the cytoskeleton","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.20091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

钙依赖性纤毛逆转见于纤毛原生动物,如四膜虫,以响应去极化刺激,但负责这种反应的轴突机制尚不清楚。该模型是由外臂动力因子(OADs)控制心跳频率,内臂动力因子(IADs)调节纤毛波形。由于纤毛反转是一种波形变化,该模型将预测IAD突变可能影响纤毛反转。我们已经使用基因破坏技术产生了几种四膜虫的行为突变体,这些突变体具有各种IADs的功能破坏。一种这样的突变体,称为KO-6,缺少I1(双头IAD),由于轴突Ca2+敏感性的丧失,不能对任何刺激做出睫状体逆转反应[Eur J Cell Biol 80 (2001) 486-497;细胞动力学,细胞骨架53(2002)281-288。相比之下,3个单头IADs的破坏[Liu等人,Cell Motil Cytoskeleton 59(2004), 201-214]产生的突变体在生物测定中表现出过度反应,测量它们在Na+和Ba2+溶液中去极化诱导的避免反应(AR)或在K+溶液中向后游动的持续时间(连续睫体逆转或CCR)。洗涤剂提取和再激活的突变体在较低的Ca2+浓度下也显示出CCR的可能性增加,这表明这三种突变体在体内的行为过度反应是由于轴突Ca2+敏感性增加。我们的数据表明,单头IAD和双头IAD在体内的作用可能是拮抗的,单头IAD的任何一个缺失都会导致行为过度反应,因为对i1诱导的逆转的抵抗力降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutations in genes encoding inner arm dynein heavy chains in Tetrahymena thermophila lead to axonemal hypersensitivity to Ca2+.

Calcium-dependent ciliary reversals are seen in ciliated protozoans such as Tetrahymena in response to depolarizing stimuli, but the axonemal mechanisms responsible for this response are not well understood. The model is that the outer arm dyneins (OADs) control the beating frequency while the inner arm dyneins (IADs) regulate ciliary waveform. Since ciliary reversal is a type of waveform change, the model would predict that IAD mutations could affect ciliary reversal. We have used gene disruption techniques to generate several behavioral mutants of Tetrahymena with functional disruptions of various IADs. One such mutant, called KO-6, is missing I1 (the two-headed IAD) and is unable to show ciliary reversals in response to any stimuli due to a loss of axonemal Ca2+ sensitivity [Eur J Cell Biol 80 (2001) 486-497; Cell Motil Cytoskeleton 53 (2002) 281-288.]. In contrast, disruption of 3 one-headed IADs [Liu et al., Cell Motil Cytoskeleton 59 (2004), 201-214] produced mutants, which showed over-responsiveness in bioassays measuring either their depolarization-induced avoiding reactions (AR) in Na+ and Ba2+ solutions or their duration of backward swimming (continuous ciliary reversal or CCR) in K+ solutions. Detergent-extracted and reactivated mutants also showed increased probabilities of CCR at lower Ca2+ concentrations suggesting that the behavioral over-responsiveness of these three mutants in vivo is due to increased axonemal Ca2+ sensitivity. Our data suggest the possibility that the one-headed IADs and the two-headed IAD act antagonistically in vivo and that loss of any one of the one-headed IADs leads to behavioral over-responsiveness due to less resistance to I1-induced reversals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信