Fatma J Al-Saeedi, Salah Kh Al-Waheeb, Peramaiyan Rajendran, Khalid M Khan, Moudhi Sadan
{"title":"99mtc -硫胶体功能显像显示,早期注射胰岛素可减轻链脲佐菌素诱导的糖尿病大鼠肝脏的组织学和功能变化。","authors":"Fatma J Al-Saeedi, Salah Kh Al-Waheeb, Peramaiyan Rajendran, Khalid M Khan, Moudhi Sadan","doi":"10.1080/10799893.2021.1912097","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the effect of insulin on the reticuloendothelial system (RES) in the liver and spleen in diabetic rats. Sprague Dawley rats were divided into control, diabetic rats (DM) and diabetic rats treated with insulin (IDM) for 2 weeks. Rats were imaged with technetium-99m-sulfur colloid (<sup>99m</sup>Tc-SC) tracer to determine regional distributions of the tracer for all groups by drawing regions of interest and then obtained the ratios as the cumulative counts of heart, liver, and spleen to the whole body (WB). Liver tissue from sacrificed rats from each group was examined by light and electron microscopy. <sup>99m</sup>Tc-SC uptake ratios showed a lower liver to WB uptake ratio in the DM rats compared to both controls and IDM rats. Electron microscopy showed severe vacuolization of the hepatocytes of DM rats. The IDM rats show complete resolution of the vacuolization. The early administration of insulin for 2 weeks to diabetic rats could significantly resolve the phagocytic RES function and histological changes in the liver.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"42 3","pages":"261-267"},"PeriodicalIF":2.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10799893.2021.1912097","citationCount":"0","resultStr":"{\"title\":\"Early initiation of insulin attenuates histological and functional changes in the liver of streptozotocin-induced diabetic rats using <sup>99m</sup>Tc-sulfur colloid functional imaging.\",\"authors\":\"Fatma J Al-Saeedi, Salah Kh Al-Waheeb, Peramaiyan Rajendran, Khalid M Khan, Moudhi Sadan\",\"doi\":\"10.1080/10799893.2021.1912097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the effect of insulin on the reticuloendothelial system (RES) in the liver and spleen in diabetic rats. Sprague Dawley rats were divided into control, diabetic rats (DM) and diabetic rats treated with insulin (IDM) for 2 weeks. Rats were imaged with technetium-99m-sulfur colloid (<sup>99m</sup>Tc-SC) tracer to determine regional distributions of the tracer for all groups by drawing regions of interest and then obtained the ratios as the cumulative counts of heart, liver, and spleen to the whole body (WB). Liver tissue from sacrificed rats from each group was examined by light and electron microscopy. <sup>99m</sup>Tc-SC uptake ratios showed a lower liver to WB uptake ratio in the DM rats compared to both controls and IDM rats. Electron microscopy showed severe vacuolization of the hepatocytes of DM rats. The IDM rats show complete resolution of the vacuolization. The early administration of insulin for 2 weeks to diabetic rats could significantly resolve the phagocytic RES function and histological changes in the liver.</p>\",\"PeriodicalId\":16962,\"journal\":{\"name\":\"Journal of Receptors and Signal Transduction\",\"volume\":\"42 3\",\"pages\":\"261-267\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10799893.2021.1912097\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Receptors and Signal Transduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10799893.2021.1912097\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2021.1912097","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Early initiation of insulin attenuates histological and functional changes in the liver of streptozotocin-induced diabetic rats using 99mTc-sulfur colloid functional imaging.
This study aimed to investigate the effect of insulin on the reticuloendothelial system (RES) in the liver and spleen in diabetic rats. Sprague Dawley rats were divided into control, diabetic rats (DM) and diabetic rats treated with insulin (IDM) for 2 weeks. Rats were imaged with technetium-99m-sulfur colloid (99mTc-SC) tracer to determine regional distributions of the tracer for all groups by drawing regions of interest and then obtained the ratios as the cumulative counts of heart, liver, and spleen to the whole body (WB). Liver tissue from sacrificed rats from each group was examined by light and electron microscopy. 99mTc-SC uptake ratios showed a lower liver to WB uptake ratio in the DM rats compared to both controls and IDM rats. Electron microscopy showed severe vacuolization of the hepatocytes of DM rats. The IDM rats show complete resolution of the vacuolization. The early administration of insulin for 2 weeks to diabetic rats could significantly resolve the phagocytic RES function and histological changes in the liver.
期刊介绍:
Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services:
BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.