基于微博超级网络理论的两步式谣言检测模型。

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Journal of Supercomputing Pub Date : 2021-01-01 Epub Date: 2021-04-01 DOI:10.1007/s11227-021-03748-x
Xuefan Dong, Ying Lian, Yuxue Chi, Xianyi Tang, Yijun Liu
{"title":"基于微博超级网络理论的两步式谣言检测模型。","authors":"Xuefan Dong, Ying Lian, Yuxue Chi, Xianyi Tang, Yijun Liu","doi":"10.1007/s11227-021-03748-x","DOIUrl":null,"url":null,"abstract":"<p><p>Based on the supernetwork theory, a two-step rumor detection model was proposed. The first step was the classification of users on the basis of user-based features. In the second step, non-user-based features, including psychology-based features, content-based features, and parts of supernetwork-based features, were used to detect rumors posted by different types of users. Four machine learning methods, namely, Naive Bayes, Neural Network, Support Vector Machine, and Logistic Regression, were applied to train the classifier. Four real cases and several assessment metrics were employed to verify the effectiveness of the proposed model. Performance of the model regarding early rumor detection was also evaluated by separating the datasets according to the posting time of posts. Results showed that this model exhibited better performance in rumor detection compared to five benchmark models, mainly owing to the application of the supernetwork theory and the two-step mechanism.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"77 10","pages":"12050-12074"},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014906/pdf/","citationCount":"0","resultStr":"{\"title\":\"A two-step rumor detection model based on the supernetwork theory about Weibo.\",\"authors\":\"Xuefan Dong, Ying Lian, Yuxue Chi, Xianyi Tang, Yijun Liu\",\"doi\":\"10.1007/s11227-021-03748-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Based on the supernetwork theory, a two-step rumor detection model was proposed. The first step was the classification of users on the basis of user-based features. In the second step, non-user-based features, including psychology-based features, content-based features, and parts of supernetwork-based features, were used to detect rumors posted by different types of users. Four machine learning methods, namely, Naive Bayes, Neural Network, Support Vector Machine, and Logistic Regression, were applied to train the classifier. Four real cases and several assessment metrics were employed to verify the effectiveness of the proposed model. Performance of the model regarding early rumor detection was also evaluated by separating the datasets according to the posting time of posts. Results showed that this model exhibited better performance in rumor detection compared to five benchmark models, mainly owing to the application of the supernetwork theory and the two-step mechanism.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\"77 10\",\"pages\":\"12050-12074\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014906/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-021-03748-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-021-03748-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在超级网络理论的基础上,提出了一个分两步走的谣言检测模型。第一步是基于用户特征的用户分类。第二步,利用非用户特征,包括心理特征、内容特征和部分超网络特征,检测不同类型用户发布的谣言。在训练分类器时,采用了四种机器学习方法,即 Naive Bayes、神经网络、支持向量机和逻辑回归。通过四个真实案例和几个评估指标来验证所提模型的有效性。此外,还根据帖子的发布时间对数据集进行了分离,从而评估了该模型在早期谣言检测方面的性能。结果表明,与五个基准模型相比,该模型在谣言检测方面表现出更好的性能,这主要归功于超级网络理论和两步机制的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A two-step rumor detection model based on the supernetwork theory about Weibo.

A two-step rumor detection model based on the supernetwork theory about Weibo.

A two-step rumor detection model based on the supernetwork theory about Weibo.

A two-step rumor detection model based on the supernetwork theory about Weibo.

Based on the supernetwork theory, a two-step rumor detection model was proposed. The first step was the classification of users on the basis of user-based features. In the second step, non-user-based features, including psychology-based features, content-based features, and parts of supernetwork-based features, were used to detect rumors posted by different types of users. Four machine learning methods, namely, Naive Bayes, Neural Network, Support Vector Machine, and Logistic Regression, were applied to train the classifier. Four real cases and several assessment metrics were employed to verify the effectiveness of the proposed model. Performance of the model regarding early rumor detection was also evaluated by separating the datasets according to the posting time of posts. Results showed that this model exhibited better performance in rumor detection compared to five benchmark models, mainly owing to the application of the supernetwork theory and the two-step mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Supercomputing
Journal of Supercomputing 工程技术-工程:电子与电气
CiteScore
6.30
自引率
12.10%
发文量
734
审稿时长
13 months
期刊介绍: The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs. Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信