{"title":"基于x线图像的卷积胶囊网络COVID-19检测","authors":"Shamik Tiwari, Anurag Jain","doi":"10.1002/ima.22566","DOIUrl":null,"url":null,"abstract":"<p>Novel corona virus COVID-19 has spread rapidly all over the world. Due to increasing COVID-19 cases, there is a dearth of testing kits. Therefore, there is a severe need for an automatic recognition system as a solution to reduce the spreading of the COVID-19 virus. This work offers a decision support system based on the X-ray image to diagnose the presence of the COVID-19 virus. A deep learning-based computer-aided decision support system will be capable to differentiate between COVID-19 and pneumonia. Recently, convolutional neural network (CNN) is designed for the diagnosis of COVID-19 patients through <i>chest radiography</i> (or <i>chest X-ray</i>, CXR) images. However, due to the usage of CNN, there are some limitations with these decision support systems. These systems suffer with the problem of view-invariance and loss of information due to down-sampling. In this paper, the capsule network (CapsNet)-based system named visual geometry group capsule network (VGG-CapsNet) for the diagnosis of COVID-19 is proposed. Due to the usage of capsule network (CapsNet), the authors have succeeded in removing the drawbacks found in the CNN-based decision support system for the detection of COVID-19. Through simulation results, it is found that VGG-CapsNet has performed better than the CNN-CapsNet model for the diagnosis of COVID-19. The proposed VGG-CapsNet-based system has shown 97% accuracy for COVID-19 versus non-COVID-19 classification, and 92% accuracy for COVID-19 versus normal versus viral pneumonia classification. Proposed VGG-CapsNet-based system available at https://github.com/shamiktiwari/COVID19_Xray can be used to detect the existence of COVID-19 virus in the human body through chest radiographic images.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"31 2","pages":"525-539"},"PeriodicalIF":3.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ima.22566","citationCount":"36","resultStr":"{\"title\":\"Convolutional capsule network for COVID-19 detection using radiography images\",\"authors\":\"Shamik Tiwari, Anurag Jain\",\"doi\":\"10.1002/ima.22566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Novel corona virus COVID-19 has spread rapidly all over the world. Due to increasing COVID-19 cases, there is a dearth of testing kits. Therefore, there is a severe need for an automatic recognition system as a solution to reduce the spreading of the COVID-19 virus. This work offers a decision support system based on the X-ray image to diagnose the presence of the COVID-19 virus. A deep learning-based computer-aided decision support system will be capable to differentiate between COVID-19 and pneumonia. Recently, convolutional neural network (CNN) is designed for the diagnosis of COVID-19 patients through <i>chest radiography</i> (or <i>chest X-ray</i>, CXR) images. However, due to the usage of CNN, there are some limitations with these decision support systems. These systems suffer with the problem of view-invariance and loss of information due to down-sampling. In this paper, the capsule network (CapsNet)-based system named visual geometry group capsule network (VGG-CapsNet) for the diagnosis of COVID-19 is proposed. Due to the usage of capsule network (CapsNet), the authors have succeeded in removing the drawbacks found in the CNN-based decision support system for the detection of COVID-19. Through simulation results, it is found that VGG-CapsNet has performed better than the CNN-CapsNet model for the diagnosis of COVID-19. The proposed VGG-CapsNet-based system has shown 97% accuracy for COVID-19 versus non-COVID-19 classification, and 92% accuracy for COVID-19 versus normal versus viral pneumonia classification. Proposed VGG-CapsNet-based system available at https://github.com/shamiktiwari/COVID19_Xray can be used to detect the existence of COVID-19 virus in the human body through chest radiographic images.</p>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"31 2\",\"pages\":\"525-539\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ima.22566\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.22566\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22566","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Convolutional capsule network for COVID-19 detection using radiography images
Novel corona virus COVID-19 has spread rapidly all over the world. Due to increasing COVID-19 cases, there is a dearth of testing kits. Therefore, there is a severe need for an automatic recognition system as a solution to reduce the spreading of the COVID-19 virus. This work offers a decision support system based on the X-ray image to diagnose the presence of the COVID-19 virus. A deep learning-based computer-aided decision support system will be capable to differentiate between COVID-19 and pneumonia. Recently, convolutional neural network (CNN) is designed for the diagnosis of COVID-19 patients through chest radiography (or chest X-ray, CXR) images. However, due to the usage of CNN, there are some limitations with these decision support systems. These systems suffer with the problem of view-invariance and loss of information due to down-sampling. In this paper, the capsule network (CapsNet)-based system named visual geometry group capsule network (VGG-CapsNet) for the diagnosis of COVID-19 is proposed. Due to the usage of capsule network (CapsNet), the authors have succeeded in removing the drawbacks found in the CNN-based decision support system for the detection of COVID-19. Through simulation results, it is found that VGG-CapsNet has performed better than the CNN-CapsNet model for the diagnosis of COVID-19. The proposed VGG-CapsNet-based system has shown 97% accuracy for COVID-19 versus non-COVID-19 classification, and 92% accuracy for COVID-19 versus normal versus viral pneumonia classification. Proposed VGG-CapsNet-based system available at https://github.com/shamiktiwari/COVID19_Xray can be used to detect the existence of COVID-19 virus in the human body through chest radiographic images.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.