{"title":"采用节能工艺电纺阿司匹林/桉叶油/脂质混合纳米纤维用于结肠靶向给药","authors":"Yibin Wang, Liang Tian, Tianhao Zhu, Jing Mei, Zezhong Chen, Deng-Guang Yu","doi":"10.1007/s40242-021-1006-9","DOIUrl":null,"url":null,"abstract":"<p><p><b>B</b>oth electrospinning apparatus and their commercial products are extending their applications in a wide variety of fields. However, very limited reports can be found about how to implement an energy-saving process and in turn to reduce the production cost. In this paper, a brand-new type of coaxial spinneret with a solid core and its electrospinning methods are developed. A novel sort of medicated Eudragit/lipid hybrid nanofibers are generated for providing a colon-targeted sustained release of aspirin. A series of characterizations demonstrates that the as-prepared hybrid nanofibers have a fine linear morphology with the aspirin/lipid separated from the matrix Eudragit to form many tiny islands. <i>In vitro</i> dissolution tests exhibit that the hybrid nanofibers are able to effectively prevent the release of aspirin under an acid condition (8.7%±3.4% for the first two hours), whereas prolong the drug release time period under a neutral condition(99.7±4.2% at the seventh hour). The energy-saving mechanism is discussed in detail. The prepared aspirin-loaded hybrid nanofibers can be further transferred into an oral dosage form for potential application in countering COVID-19 in the future.</p>","PeriodicalId":9785,"journal":{"name":"Chemical Research in Chinese Universities","volume":"37 3","pages":"443-449"},"PeriodicalIF":3.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010490/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrospun Aspirin/Eudragit/Lipid Hybrid Nanofibers for Colon-targeted Delivery Using an Energy-saving Process.\",\"authors\":\"Yibin Wang, Liang Tian, Tianhao Zhu, Jing Mei, Zezhong Chen, Deng-Guang Yu\",\"doi\":\"10.1007/s40242-021-1006-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>B</b>oth electrospinning apparatus and their commercial products are extending their applications in a wide variety of fields. However, very limited reports can be found about how to implement an energy-saving process and in turn to reduce the production cost. In this paper, a brand-new type of coaxial spinneret with a solid core and its electrospinning methods are developed. A novel sort of medicated Eudragit/lipid hybrid nanofibers are generated for providing a colon-targeted sustained release of aspirin. A series of characterizations demonstrates that the as-prepared hybrid nanofibers have a fine linear morphology with the aspirin/lipid separated from the matrix Eudragit to form many tiny islands. <i>In vitro</i> dissolution tests exhibit that the hybrid nanofibers are able to effectively prevent the release of aspirin under an acid condition (8.7%±3.4% for the first two hours), whereas prolong the drug release time period under a neutral condition(99.7±4.2% at the seventh hour). The energy-saving mechanism is discussed in detail. The prepared aspirin-loaded hybrid nanofibers can be further transferred into an oral dosage form for potential application in countering COVID-19 in the future.</p>\",\"PeriodicalId\":9785,\"journal\":{\"name\":\"Chemical Research in Chinese Universities\",\"volume\":\"37 3\",\"pages\":\"443-449\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010490/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Chinese Universities\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s40242-021-1006-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Chinese Universities","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s40242-021-1006-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrospun Aspirin/Eudragit/Lipid Hybrid Nanofibers for Colon-targeted Delivery Using an Energy-saving Process.
Both electrospinning apparatus and their commercial products are extending their applications in a wide variety of fields. However, very limited reports can be found about how to implement an energy-saving process and in turn to reduce the production cost. In this paper, a brand-new type of coaxial spinneret with a solid core and its electrospinning methods are developed. A novel sort of medicated Eudragit/lipid hybrid nanofibers are generated for providing a colon-targeted sustained release of aspirin. A series of characterizations demonstrates that the as-prepared hybrid nanofibers have a fine linear morphology with the aspirin/lipid separated from the matrix Eudragit to form many tiny islands. In vitro dissolution tests exhibit that the hybrid nanofibers are able to effectively prevent the release of aspirin under an acid condition (8.7%±3.4% for the first two hours), whereas prolong the drug release time period under a neutral condition(99.7±4.2% at the seventh hour). The energy-saving mechanism is discussed in detail. The prepared aspirin-loaded hybrid nanofibers can be further transferred into an oral dosage form for potential application in countering COVID-19 in the future.
期刊介绍:
The journal publishes research articles, letters/communications and reviews written by faculty members, researchers and postgraduates in universities, colleges and research institutes all over China and overseas. It reports the latest and most creative results of important fundamental research in all aspects of chemistry and of developments with significant consequences across subdisciplines.
Main research areas include (but are not limited to):
Organic chemistry (synthesis, characterization, and application);
Inorganic chemistry (bio-inorganic chemistry, inorganic material chemistry);
Analytical chemistry (especially chemometrics and the application of instrumental analysis and spectroscopy);
Physical chemistry (mechanisms, catalysis, thermodynamics and dynamics);
Polymer chemistry and polymer physics (mechanisms, material, catalysis, thermodynamics and dynamics);
Quantum chemistry (quantum mechanical theory, quantum partition function, quantum statistical mechanics);
Biochemistry;
Biochemical engineering;
Medicinal chemistry;
Nanoscience (nanochemistry, nanomaterials).