{"title":"基于生成对抗网络模型的实时医学超声模拟器。","authors":"Bo Peng, Xing Huang, Shiyuan Wang, Jingfeng Jiang","doi":"10.1109/icip.2019.8803570","DOIUrl":null,"url":null,"abstract":"This paper presents an artificial intelligence-based ultrasound simulator suitable for medical simulation and clinical training. Particularly, we propose a machine learning approach to realistically simulate ultrasound images based on generative adversarial networks (GANs). Using B-mode ultrasound images simulated by a known ultrasound simulator, Field II, an \"image-to-image\" ultrasound simulator was trained. Then, through evaluations, we found that the GAN-based simulator can generate B-mode images following Rayleigh scattering. Our preliminary study demonstrated that ultrasound B-mode images from anatomies inferred from magnetic resonance imaging (MRI) data were feasible. While some image blurring was observed, ultrasound B- mode images obtained were both visually and quantitatively comparable to those obtained using the Field II simulator. It is also important to note that the GAN-based ultrasound simulator was computationally efficient and could achieve a frame rate of 15 frames/second using a regular laptop computer. In the future, the proposed GAN-based simulator will be used to synthesize more realistic looking ultrasound images with artifacts such as shadowing.","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2019 ","pages":"4629-4633"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icip.2019.8803570","citationCount":"12","resultStr":"{\"title\":\"A REAL-TIME MEDICAL ULTRASOUND SIMULATOR BASED ON A GENERATIVE ADVERSARIAL NETWORK MODEL.\",\"authors\":\"Bo Peng, Xing Huang, Shiyuan Wang, Jingfeng Jiang\",\"doi\":\"10.1109/icip.2019.8803570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an artificial intelligence-based ultrasound simulator suitable for medical simulation and clinical training. Particularly, we propose a machine learning approach to realistically simulate ultrasound images based on generative adversarial networks (GANs). Using B-mode ultrasound images simulated by a known ultrasound simulator, Field II, an \\\"image-to-image\\\" ultrasound simulator was trained. Then, through evaluations, we found that the GAN-based simulator can generate B-mode images following Rayleigh scattering. Our preliminary study demonstrated that ultrasound B-mode images from anatomies inferred from magnetic resonance imaging (MRI) data were feasible. While some image blurring was observed, ultrasound B- mode images obtained were both visually and quantitatively comparable to those obtained using the Field II simulator. It is also important to note that the GAN-based ultrasound simulator was computationally efficient and could achieve a frame rate of 15 frames/second using a regular laptop computer. In the future, the proposed GAN-based simulator will be used to synthesize more realistic looking ultrasound images with artifacts such as shadowing.\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"2019 \",\"pages\":\"4629-4633\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/icip.2019.8803570\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icip.2019.8803570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip.2019.8803570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/8/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A REAL-TIME MEDICAL ULTRASOUND SIMULATOR BASED ON A GENERATIVE ADVERSARIAL NETWORK MODEL.
This paper presents an artificial intelligence-based ultrasound simulator suitable for medical simulation and clinical training. Particularly, we propose a machine learning approach to realistically simulate ultrasound images based on generative adversarial networks (GANs). Using B-mode ultrasound images simulated by a known ultrasound simulator, Field II, an "image-to-image" ultrasound simulator was trained. Then, through evaluations, we found that the GAN-based simulator can generate B-mode images following Rayleigh scattering. Our preliminary study demonstrated that ultrasound B-mode images from anatomies inferred from magnetic resonance imaging (MRI) data were feasible. While some image blurring was observed, ultrasound B- mode images obtained were both visually and quantitatively comparable to those obtained using the Field II simulator. It is also important to note that the GAN-based ultrasound simulator was computationally efficient and could achieve a frame rate of 15 frames/second using a regular laptop computer. In the future, the proposed GAN-based simulator will be used to synthesize more realistic looking ultrasound images with artifacts such as shadowing.