Alexandra Coomans de Brachène, Angela Castela, Anyïshai E Musuaya, Lorella Marselli, Piero Marchetti, Decio L Eizirik
{"title":"内源性线粒体双链RNA不是人类胰腺β细胞I型干扰素反应的激活剂。","authors":"Alexandra Coomans de Brachène, Angela Castela, Anyïshai E Musuaya, Lorella Marselli, Piero Marchetti, Decio L Eizirik","doi":"10.1186/s13317-021-00148-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type 1 diabetes (T1D) is an autoimmune disease characterized by the progressive destruction of pancreatic beta cells. Interferon-α (IFNα), an antiviral cytokine, is expressed in the pancreatic islets in early T1D, which may be secondary to viral infections. However, not all patients harboring a type I IFN signature present signals of viral infection, suggesting that this response might be initiated by other \"danger signals\". Accumulation of mitochondrial double-stranded RNA (mtdsRNA; a danger signal), secondary to silencing of members of the mitochondrial degradosome, PNPT1 and SUV3, has been described to activate the innate immune response.</p><p><strong>Methods: </strong>To evaluate whether mtdsRNA represents a \"danger signal\" for pancreatic beta cells in the context of T1D, we silenced PNPT1 and/or SUV3 in slowly proliferating human insulin-secreting EndoC-βH1 cells and in non-proliferating primary human beta cells and evaluated dsRNA accumulation by immunofluorescence and the type I IFN response by western blotting and RT-qPCR.</p><p><strong>Results: </strong>Only the simultaneous silencing of PNPT1/SUV3 induced dsRNA accumulation in EndoC-βH1 cells but not in dispersed human islets, and there was no induction of a type I IFN response. By contrast, silencing of these two genes individually was enough to induce dsRNA accumulation in fibroblasts present in the human islet preparations.</p><p><strong>Conclusions: </strong>These data suggest that accumulation of endogenous mtdsRNA following degradosome knockdown depends on the proliferative capacity of the cells and is not a mediator of the type I IFN response in human pancreatic beta cells.</p>","PeriodicalId":8655,"journal":{"name":"Auto-Immunity Highlights","volume":"12 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005246/pdf/","citationCount":"5","resultStr":"{\"title\":\"Endogenous mitochondrial double-stranded RNA is not an activator of the type I interferon response in human pancreatic beta cells.\",\"authors\":\"Alexandra Coomans de Brachène, Angela Castela, Anyïshai E Musuaya, Lorella Marselli, Piero Marchetti, Decio L Eizirik\",\"doi\":\"10.1186/s13317-021-00148-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Type 1 diabetes (T1D) is an autoimmune disease characterized by the progressive destruction of pancreatic beta cells. Interferon-α (IFNα), an antiviral cytokine, is expressed in the pancreatic islets in early T1D, which may be secondary to viral infections. However, not all patients harboring a type I IFN signature present signals of viral infection, suggesting that this response might be initiated by other \\\"danger signals\\\". Accumulation of mitochondrial double-stranded RNA (mtdsRNA; a danger signal), secondary to silencing of members of the mitochondrial degradosome, PNPT1 and SUV3, has been described to activate the innate immune response.</p><p><strong>Methods: </strong>To evaluate whether mtdsRNA represents a \\\"danger signal\\\" for pancreatic beta cells in the context of T1D, we silenced PNPT1 and/or SUV3 in slowly proliferating human insulin-secreting EndoC-βH1 cells and in non-proliferating primary human beta cells and evaluated dsRNA accumulation by immunofluorescence and the type I IFN response by western blotting and RT-qPCR.</p><p><strong>Results: </strong>Only the simultaneous silencing of PNPT1/SUV3 induced dsRNA accumulation in EndoC-βH1 cells but not in dispersed human islets, and there was no induction of a type I IFN response. By contrast, silencing of these two genes individually was enough to induce dsRNA accumulation in fibroblasts present in the human islet preparations.</p><p><strong>Conclusions: </strong>These data suggest that accumulation of endogenous mtdsRNA following degradosome knockdown depends on the proliferative capacity of the cells and is not a mediator of the type I IFN response in human pancreatic beta cells.</p>\",\"PeriodicalId\":8655,\"journal\":{\"name\":\"Auto-Immunity Highlights\",\"volume\":\"12 1\",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005246/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Auto-Immunity Highlights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13317-021-00148-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Auto-Immunity Highlights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13317-021-00148-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Endogenous mitochondrial double-stranded RNA is not an activator of the type I interferon response in human pancreatic beta cells.
Background: Type 1 diabetes (T1D) is an autoimmune disease characterized by the progressive destruction of pancreatic beta cells. Interferon-α (IFNα), an antiviral cytokine, is expressed in the pancreatic islets in early T1D, which may be secondary to viral infections. However, not all patients harboring a type I IFN signature present signals of viral infection, suggesting that this response might be initiated by other "danger signals". Accumulation of mitochondrial double-stranded RNA (mtdsRNA; a danger signal), secondary to silencing of members of the mitochondrial degradosome, PNPT1 and SUV3, has been described to activate the innate immune response.
Methods: To evaluate whether mtdsRNA represents a "danger signal" for pancreatic beta cells in the context of T1D, we silenced PNPT1 and/or SUV3 in slowly proliferating human insulin-secreting EndoC-βH1 cells and in non-proliferating primary human beta cells and evaluated dsRNA accumulation by immunofluorescence and the type I IFN response by western blotting and RT-qPCR.
Results: Only the simultaneous silencing of PNPT1/SUV3 induced dsRNA accumulation in EndoC-βH1 cells but not in dispersed human islets, and there was no induction of a type I IFN response. By contrast, silencing of these two genes individually was enough to induce dsRNA accumulation in fibroblasts present in the human islet preparations.
Conclusions: These data suggest that accumulation of endogenous mtdsRNA following degradosome knockdown depends on the proliferative capacity of the cells and is not a mediator of the type I IFN response in human pancreatic beta cells.