{"title":"Halton序列和Niederreiter序列的对相关不是泊松的。","authors":"Roswitha Hofer, Lisa Kaltenböck","doi":"10.1007/s00605-021-01531-x","DOIUrl":null,"url":null,"abstract":"<p><p>Niederreiter and Halton sequences are two prominent classes of higher-dimensional sequences which are widely used in practice for numerical integration methods because of their excellent distribution qualities. In this paper we show that these sequences-even though they are uniformly distributed-fail to satisfy the stronger property of Poissonian pair correlations. This extends already established results for one-dimensional sequences and confirms a conjecture of Larcher and Stockinger who hypothesized that the Halton sequences are not Poissonian. The proofs rely on a general tool which identifies a specific regularity of a sequence to be sufficient for not having Poissonian pair correlations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-021-01531-x","citationCount":"5","resultStr":"{\"title\":\"Pair correlations of Halton and Niederreiter Sequences are not Poissonian.\",\"authors\":\"Roswitha Hofer, Lisa Kaltenböck\",\"doi\":\"10.1007/s00605-021-01531-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Niederreiter and Halton sequences are two prominent classes of higher-dimensional sequences which are widely used in practice for numerical integration methods because of their excellent distribution qualities. In this paper we show that these sequences-even though they are uniformly distributed-fail to satisfy the stronger property of Poissonian pair correlations. This extends already established results for one-dimensional sequences and confirms a conjecture of Larcher and Stockinger who hypothesized that the Halton sequences are not Poissonian. The proofs rely on a general tool which identifies a specific regularity of a sequence to be sufficient for not having Poissonian pair correlations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00605-021-01531-x\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-021-01531-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-021-01531-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Pair correlations of Halton and Niederreiter Sequences are not Poissonian.
Niederreiter and Halton sequences are two prominent classes of higher-dimensional sequences which are widely used in practice for numerical integration methods because of their excellent distribution qualities. In this paper we show that these sequences-even though they are uniformly distributed-fail to satisfy the stronger property of Poissonian pair correlations. This extends already established results for one-dimensional sequences and confirms a conjecture of Larcher and Stockinger who hypothesized that the Halton sequences are not Poissonian. The proofs rely on a general tool which identifies a specific regularity of a sequence to be sufficient for not having Poissonian pair correlations.