基于可解释的XGBoost的12导联心电图分类应用神经科学的信息理论测量。

Computing in cardiology Pub Date : 2020-08-14 eCollection Date: 2020-01-01 DOI:10.22489/CinC.2020.185
Hardik Rajpal, Madalina Sas, Chris Lockwood, Rebecca Joakim, Nicholas S Peters, Max Falkenberg
{"title":"基于可解释的XGBoost的12导联心电图分类应用神经科学的信息理论测量。","authors":"Hardik Rajpal,&nbsp;Madalina Sas,&nbsp;Chris Lockwood,&nbsp;Rebecca Joakim,&nbsp;Nicholas S Peters,&nbsp;Max Falkenberg","doi":"10.22489/CinC.2020.185","DOIUrl":null,"url":null,"abstract":"<p><p>Automated ECG classification is a standard feature in many commercial 12-Lead ECG machines. As part of the Physionet/CinC Challenge 2020, our team, \"Mad-hardmax\", developed an XGBoost based classification method for the analysis of 12-Lead ECGs acquired from four different countries. Our aim is to develop an interpretable classifier that outputs diagnoses which can be traced to specific ECG features, while also testing the potential of information theoretic features for ECG diagnosis. These measures capture high-level interdependencies across ECG leads which are effective for discriminating conditions with multiple complex morphologies. On unseen test data, our algorithm achieved a challenge score of 0.155 relative to a winning score of 0.533, putting our submission in 24th position from 41 successful entries.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610399/pdf/EMS118968.pdf","citationCount":"4","resultStr":"{\"title\":\"Interpretable XGBoost Based Classification of 12-lead ECGs Applying Information Theory Measures From Neuroscience.\",\"authors\":\"Hardik Rajpal,&nbsp;Madalina Sas,&nbsp;Chris Lockwood,&nbsp;Rebecca Joakim,&nbsp;Nicholas S Peters,&nbsp;Max Falkenberg\",\"doi\":\"10.22489/CinC.2020.185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automated ECG classification is a standard feature in many commercial 12-Lead ECG machines. As part of the Physionet/CinC Challenge 2020, our team, \\\"Mad-hardmax\\\", developed an XGBoost based classification method for the analysis of 12-Lead ECGs acquired from four different countries. Our aim is to develop an interpretable classifier that outputs diagnoses which can be traced to specific ECG features, while also testing the potential of information theoretic features for ECG diagnosis. These measures capture high-level interdependencies across ECG leads which are effective for discriminating conditions with multiple complex morphologies. On unseen test data, our algorithm achieved a challenge score of 0.155 relative to a winning score of 0.533, putting our submission in 24th position from 41 successful entries.</p>\",\"PeriodicalId\":72683,\"journal\":{\"name\":\"Computing in cardiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610399/pdf/EMS118968.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2020.185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自动心电图分类是许多商用12导联心电图机的标准功能。作为2020年Physionet/CinC挑战赛的一部分,我们的团队“Mad-hardmax”开发了一种基于XGBoost的分类方法,用于分析来自四个不同国家的12导联心电图。我们的目标是开发一种可解释的分类器,输出可追溯到特定ECG特征的诊断,同时也测试了信息理论特征在ECG诊断中的潜力。这些措施捕获了ECG导联之间的高水平相互依赖性,这对于区分具有多种复杂形态的条件是有效的。在未见的测试数据中,我们的算法获得了0.155的挑战分数,而获胜分数为0.533,在41个成功参赛作品中排名第24位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable XGBoost Based Classification of 12-lead ECGs Applying Information Theory Measures From Neuroscience.

Automated ECG classification is a standard feature in many commercial 12-Lead ECG machines. As part of the Physionet/CinC Challenge 2020, our team, "Mad-hardmax", developed an XGBoost based classification method for the analysis of 12-Lead ECGs acquired from four different countries. Our aim is to develop an interpretable classifier that outputs diagnoses which can be traced to specific ECG features, while also testing the potential of information theoretic features for ECG diagnosis. These measures capture high-level interdependencies across ECG leads which are effective for discriminating conditions with multiple complex morphologies. On unseen test data, our algorithm achieved a challenge score of 0.155 relative to a winning score of 0.533, putting our submission in 24th position from 41 successful entries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信