具有性能保证的片常数信号结构化低阶恢复。

Greg Ongie, Sampurna Biswas, Mathews Jacob
{"title":"具有性能保证的片常数信号结构化低阶恢复。","authors":"Greg Ongie, Sampurna Biswas, Mathews Jacob","doi":"10.1109/icip.2016.7532500","DOIUrl":null,"url":null,"abstract":"<p><p>We derive theoretical guarantees for the exact recovery of piecewise constant two-dimensional images from a minimal number of non-uniform Fourier samples using a convex matrix completion algorithm. We assume the discontinuities of the image are localized to the zero level-set of a bandlimited function, which induces certain linear dependencies in Fourier domain, such that a multifold Toeplitz matrix built from the Fourier data is known to be low-rank. The recovery algorithm arranges the known Fourier samples into the structured matrix then attempts recovery of the missing Fourier data by minimizing the nuclear norm subject to structure and data constraints. This work adapts results by Chen and Chi on the recovery of isolated Diracs via nuclear norm minimization of a similar multifold Hankel structure. We show that exact recovery is possible with high probability when the bandlimited function describing the edge set satisfies an incoherency property. Finally, we demonstrate the algorithm on the recovery of undersampled MRI data.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2016 ","pages":"963-967"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985822/pdf/nihms-1667938.pdf","citationCount":"0","resultStr":"{\"title\":\"STRUCTURED LOW-RANK RECOVERY OF PIECEWISE CONSTANT SIGNALS WITH PERFORMANCE GUARANTEES.\",\"authors\":\"Greg Ongie, Sampurna Biswas, Mathews Jacob\",\"doi\":\"10.1109/icip.2016.7532500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We derive theoretical guarantees for the exact recovery of piecewise constant two-dimensional images from a minimal number of non-uniform Fourier samples using a convex matrix completion algorithm. We assume the discontinuities of the image are localized to the zero level-set of a bandlimited function, which induces certain linear dependencies in Fourier domain, such that a multifold Toeplitz matrix built from the Fourier data is known to be low-rank. The recovery algorithm arranges the known Fourier samples into the structured matrix then attempts recovery of the missing Fourier data by minimizing the nuclear norm subject to structure and data constraints. This work adapts results by Chen and Chi on the recovery of isolated Diracs via nuclear norm minimization of a similar multifold Hankel structure. We show that exact recovery is possible with high probability when the bandlimited function describing the edge set satisfies an incoherency property. Finally, we demonstrate the algorithm on the recovery of undersampled MRI data.</p>\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"2016 \",\"pages\":\"963-967\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985822/pdf/nihms-1667938.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icip.2016.7532500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip.2016.7532500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用凸矩阵补全算法,从最少的非均匀傅立叶样本中得出了精确恢复片断常数二维图像的理论保证。我们假定图像的不连续性被定位到带限函数的零电平集,这在傅立叶域中引起了某些线性依赖,因此从傅立叶数据建立的多倍托普利兹矩阵已知是低秩的。恢复算法将已知的傅立叶样本排列到结构矩阵中,然后在结构和数据约束条件下通过最小化核规范尝试恢复缺失的傅立叶数据。这项工作改编了 Chen 和 Chi 通过类似的多重 Hankel 结构的核规范最小化恢复孤立 Diracs 的结果。我们证明,当描述边缘集的带限函数满足不一致性时,精确恢复是有可能的。最后,我们在恢复欠采样磁共振成像数据时演示了该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

STRUCTURED LOW-RANK RECOVERY OF PIECEWISE CONSTANT SIGNALS WITH PERFORMANCE GUARANTEES.

STRUCTURED LOW-RANK RECOVERY OF PIECEWISE CONSTANT SIGNALS WITH PERFORMANCE GUARANTEES.

STRUCTURED LOW-RANK RECOVERY OF PIECEWISE CONSTANT SIGNALS WITH PERFORMANCE GUARANTEES.

STRUCTURED LOW-RANK RECOVERY OF PIECEWISE CONSTANT SIGNALS WITH PERFORMANCE GUARANTEES.

We derive theoretical guarantees for the exact recovery of piecewise constant two-dimensional images from a minimal number of non-uniform Fourier samples using a convex matrix completion algorithm. We assume the discontinuities of the image are localized to the zero level-set of a bandlimited function, which induces certain linear dependencies in Fourier domain, such that a multifold Toeplitz matrix built from the Fourier data is known to be low-rank. The recovery algorithm arranges the known Fourier samples into the structured matrix then attempts recovery of the missing Fourier data by minimizing the nuclear norm subject to structure and data constraints. This work adapts results by Chen and Chi on the recovery of isolated Diracs via nuclear norm minimization of a similar multifold Hankel structure. We show that exact recovery is possible with high probability when the bandlimited function describing the edge set satisfies an incoherency property. Finally, we demonstrate the algorithm on the recovery of undersampled MRI data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信