锡耶纳:使用概念识别的数据集的半自动语义增强。

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Andreea Grigoriu, Amrapali Zaveri, Gerhard Weiss, Michel Dumontier
{"title":"锡耶纳:使用概念识别的数据集的半自动语义增强。","authors":"Andreea Grigoriu,&nbsp;Amrapali Zaveri,&nbsp;Gerhard Weiss,&nbsp;Michel Dumontier","doi":"10.1186/s13326-021-00239-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The amount of available data, which can facilitate answering scientific research questions, is growing. However, the different formats of published data are expanding as well, creating a serious challenge when multiple datasets need to be integrated for answering a question.</p><p><strong>Results: </strong>This paper presents a semi-automated framework that provides semantic enhancement of biomedical data, specifically gene datasets. The framework involved a concept recognition task using machine learning, in combination with the BioPortal annotator. Compared to using methods which require only the BioPortal annotator for semantic enhancement, the proposed framework achieves the highest results.</p><p><strong>Conclusions: </strong>Using concept recognition combined with machine learning techniques and annotation with a biomedical ontology, the proposed framework can provide datasets to reach their full potential of providing meaningful information, which can answer scientific research questions.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"5"},"PeriodicalIF":1.6000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13326-021-00239-z","citationCount":"0","resultStr":"{\"title\":\"SIENA: Semi-automatic semantic enhancement of datasets using concept recognition.\",\"authors\":\"Andreea Grigoriu,&nbsp;Amrapali Zaveri,&nbsp;Gerhard Weiss,&nbsp;Michel Dumontier\",\"doi\":\"10.1186/s13326-021-00239-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The amount of available data, which can facilitate answering scientific research questions, is growing. However, the different formats of published data are expanding as well, creating a serious challenge when multiple datasets need to be integrated for answering a question.</p><p><strong>Results: </strong>This paper presents a semi-automated framework that provides semantic enhancement of biomedical data, specifically gene datasets. The framework involved a concept recognition task using machine learning, in combination with the BioPortal annotator. Compared to using methods which require only the BioPortal annotator for semantic enhancement, the proposed framework achieves the highest results.</p><p><strong>Conclusions: </strong>Using concept recognition combined with machine learning techniques and annotation with a biomedical ontology, the proposed framework can provide datasets to reach their full potential of providing meaningful information, which can answer scientific research questions.</p>\",\"PeriodicalId\":15055,\"journal\":{\"name\":\"Journal of Biomedical Semantics\",\"volume\":\" \",\"pages\":\"5\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13326-021-00239-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Semantics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13326-021-00239-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-021-00239-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:可用数据的数量正在增长,这些数据有助于回答科学研究问题。然而,发布数据的不同格式也在扩展,当需要集成多个数据集来回答一个问题时,这就产生了严重的挑战。结果:本文提出了一个半自动框架,提供生物医学数据,特别是基因数据集的语义增强。该框架涉及使用机器学习的概念识别任务,并结合了biopportal注释器。与使用仅需要BioPortal注释器进行语义增强的方法相比,所提出的框架达到了最高的效果。结论:利用概念识别结合机器学习技术和生物医学本体的注释,所提出的框架可以提供数据集,以充分发挥其提供有意义信息的潜力,从而可以回答科学研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SIENA: Semi-automatic semantic enhancement of datasets using concept recognition.

SIENA: Semi-automatic semantic enhancement of datasets using concept recognition.

SIENA: Semi-automatic semantic enhancement of datasets using concept recognition.

SIENA: Semi-automatic semantic enhancement of datasets using concept recognition.

Background: The amount of available data, which can facilitate answering scientific research questions, is growing. However, the different formats of published data are expanding as well, creating a serious challenge when multiple datasets need to be integrated for answering a question.

Results: This paper presents a semi-automated framework that provides semantic enhancement of biomedical data, specifically gene datasets. The framework involved a concept recognition task using machine learning, in combination with the BioPortal annotator. Compared to using methods which require only the BioPortal annotator for semantic enhancement, the proposed framework achieves the highest results.

Conclusions: Using concept recognition combined with machine learning techniques and annotation with a biomedical ontology, the proposed framework can provide datasets to reach their full potential of providing meaningful information, which can answer scientific research questions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信