Pablo Martínez-Camblor, Sonia Pérez-Fernández, Susana Díaz-Coto
{"title":"广义接收机工作特性曲线下的面积。","authors":"Pablo Martínez-Camblor, Sonia Pérez-Fernández, Susana Díaz-Coto","doi":"10.1515/ijb-2020-0091","DOIUrl":null,"url":null,"abstract":"<p><p>The receiver operating-characteristic (ROC) curve is a well-known graphical tool routinely used for evaluating the discriminatory ability of continuous markers, referring to a binary characteristic. The area under the curve (AUC) has been proposed as a summarized accuracy index. Higher values of the marker are usually associated with higher probabilities of having the characteristic under study. However, there are other situations where both, higher and lower marker scores, are associated with a positive result. The generalized ROC (gROC) curve has been proposed as a proper extension of the ROC curve to fit these situations. Of course, the corresponding area under the gROC curve, gAUC, has also been introduced as a global measure of the classification capacity. In this paper, we study in deep the gAUC properties. The weak convergence of its empirical estimator is provided while deriving an explicit and useful expression for the asymptotic variance. We also obtain the expression for the asymptotic covariance of related gAUCs and propose a non-parametric procedure to compare them. The finite-samples behavior is studied through Monte Carlo simulations under different scenarios, presenting a real-world problem in order to illustrate its practical application. The <i>R</i> code functions implementing the procedures are provided as Supplementary Material.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2020-0091","citationCount":"10","resultStr":"{\"title\":\"The area under the generalized receiver-operating characteristic curve.\",\"authors\":\"Pablo Martínez-Camblor, Sonia Pérez-Fernández, Susana Díaz-Coto\",\"doi\":\"10.1515/ijb-2020-0091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The receiver operating-characteristic (ROC) curve is a well-known graphical tool routinely used for evaluating the discriminatory ability of continuous markers, referring to a binary characteristic. The area under the curve (AUC) has been proposed as a summarized accuracy index. Higher values of the marker are usually associated with higher probabilities of having the characteristic under study. However, there are other situations where both, higher and lower marker scores, are associated with a positive result. The generalized ROC (gROC) curve has been proposed as a proper extension of the ROC curve to fit these situations. Of course, the corresponding area under the gROC curve, gAUC, has also been introduced as a global measure of the classification capacity. In this paper, we study in deep the gAUC properties. The weak convergence of its empirical estimator is provided while deriving an explicit and useful expression for the asymptotic variance. We also obtain the expression for the asymptotic covariance of related gAUCs and propose a non-parametric procedure to compare them. The finite-samples behavior is studied through Monte Carlo simulations under different scenarios, presenting a real-world problem in order to illustrate its practical application. The <i>R</i> code functions implementing the procedures are provided as Supplementary Material.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2020-0091\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2020-0091\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0091","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The area under the generalized receiver-operating characteristic curve.
The receiver operating-characteristic (ROC) curve is a well-known graphical tool routinely used for evaluating the discriminatory ability of continuous markers, referring to a binary characteristic. The area under the curve (AUC) has been proposed as a summarized accuracy index. Higher values of the marker are usually associated with higher probabilities of having the characteristic under study. However, there are other situations where both, higher and lower marker scores, are associated with a positive result. The generalized ROC (gROC) curve has been proposed as a proper extension of the ROC curve to fit these situations. Of course, the corresponding area under the gROC curve, gAUC, has also been introduced as a global measure of the classification capacity. In this paper, we study in deep the gAUC properties. The weak convergence of its empirical estimator is provided while deriving an explicit and useful expression for the asymptotic variance. We also obtain the expression for the asymptotic covariance of related gAUCs and propose a non-parametric procedure to compare them. The finite-samples behavior is studied through Monte Carlo simulations under different scenarios, presenting a real-world problem in order to illustrate its practical application. The R code functions implementing the procedures are provided as Supplementary Material.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.