混合面板计数数据在癌症研究中的应用的回归分析。

Pub Date : 2021-04-01 Epub Date: 2020-08-17 DOI:10.1007/s12561-020-09291-2
Yimei Li, Liang Zhu, Lei Liu, Leslie L Robison
{"title":"混合面板计数数据在癌症研究中的应用的回归分析。","authors":"Yimei Li,&nbsp;Liang Zhu,&nbsp;Lei Liu,&nbsp;Leslie L Robison","doi":"10.1007/s12561-020-09291-2","DOIUrl":null,"url":null,"abstract":"<p><p>Both panel-count data and panel-binary data are common data types in recurrent event studies. Because of inconsistent questionnaires or missing data during the follow-ups, mixed data types need to be addressed frequently. A recently proposed semiparametric approach uses a proportional means model to facilitate regression analyses of mixed panel-count and panel-binary data. This method can use all available information regardless of the record type and provide unbiased estimates. However, the large number of nuisance parameters in the nonparametric baseline hazard function makes the estimating procedure very complicated and time-consuming. We approximated the baseline hazard function to simplify the estimating procedure. Simulation studies showed that our method performed similarly to that of the previous semiparametric likelihood-based method, but with much faster speed. Approximating the baseline hazard not only reduced the computational burden but also made it possible to implement the estimating procedure in a standard software, such as SAS.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12561-020-09291-2","citationCount":"1","resultStr":"{\"title\":\"Regression analysis of mixed panel-count data with application to cancer studies.\",\"authors\":\"Yimei Li,&nbsp;Liang Zhu,&nbsp;Lei Liu,&nbsp;Leslie L Robison\",\"doi\":\"10.1007/s12561-020-09291-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Both panel-count data and panel-binary data are common data types in recurrent event studies. Because of inconsistent questionnaires or missing data during the follow-ups, mixed data types need to be addressed frequently. A recently proposed semiparametric approach uses a proportional means model to facilitate regression analyses of mixed panel-count and panel-binary data. This method can use all available information regardless of the record type and provide unbiased estimates. However, the large number of nuisance parameters in the nonparametric baseline hazard function makes the estimating procedure very complicated and time-consuming. We approximated the baseline hazard function to simplify the estimating procedure. Simulation studies showed that our method performed similarly to that of the previous semiparametric likelihood-based method, but with much faster speed. Approximating the baseline hazard not only reduced the computational burden but also made it possible to implement the estimating procedure in a standard software, such as SAS.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12561-020-09291-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12561-020-09291-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-020-09291-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

面板计数数据和面板二进制数据是复发事件研究中常见的数据类型。由于问卷不一致或随访期间数据缺失,需要经常处理混合数据类型。最近提出的半参数方法使用比例均值模型来促进混合面板计数和面板二进制数据的回归分析。这种方法可以使用所有可用的信息,而不考虑记录类型,并提供无偏估计。然而,非参数基线危害函数中大量的干扰参数使得估计过程非常复杂和耗时。我们近似基线危险函数以简化估计过程。仿真研究表明,该方法的性能与基于半参数似然的方法相似,但速度快得多。接近基线危险不仅减少了计算负担,而且使在标准软件(如SAS)中实现估计过程成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Regression analysis of mixed panel-count data with application to cancer studies.

Both panel-count data and panel-binary data are common data types in recurrent event studies. Because of inconsistent questionnaires or missing data during the follow-ups, mixed data types need to be addressed frequently. A recently proposed semiparametric approach uses a proportional means model to facilitate regression analyses of mixed panel-count and panel-binary data. This method can use all available information regardless of the record type and provide unbiased estimates. However, the large number of nuisance parameters in the nonparametric baseline hazard function makes the estimating procedure very complicated and time-consuming. We approximated the baseline hazard function to simplify the estimating procedure. Simulation studies showed that our method performed similarly to that of the previous semiparametric likelihood-based method, but with much faster speed. Approximating the baseline hazard not only reduced the computational burden but also made it possible to implement the estimating procedure in a standard software, such as SAS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信