脑血管紧张素系统:癫痫治疗的新希望?

Alberto Javier Ramos
{"title":"脑血管紧张素系统:癫痫治疗的新希望?","authors":"Alberto Javier Ramos","doi":"10.1042/CS20201296","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is a highly prevalent neurological disease and anti-epileptic drugs (AED) are almost the unique clinical treatment option. A disbalanced brain renin-angiotensin system (RAS) has been proposed in epilepsy and several reports have shown that angiotensin II (Ang II) receptor-1 (ATR1) activation is pro-inflammatory and pro-epileptogenic. In agreement, ATR1 blockage with the repurposed drug losartan has shown benefits in animal models of epilepsy. Processing of Ang II by ACE2 enzyme renders Ang-(1-7), a metabolite that activates the mitochondrial assembly (Mas) receptor (MasR) pathway. MasR activation presents beneficial effects, facilitating vasodilatation, increasing anti-inflammatory and antioxidative responses. In a recent paper published in Clinical Science, Gomes and colleagues (Clin. Sci. (Lond.) (2020) 134, 2263-2277) performed intracerebroventricular (icv) infusion of Ang-(1-7) in animals subjected to the pilocarpine model of epilepsy, starting after the first spontaneous motor seizure (SMS). They showed that this approach reduced the frequency of SMS, restored animal anxiety, increased exploration, and augmented the hippocampal expression of protective catalase enzyme and antiapoptotic protein B-cell lymphoma 2 (Bcl-2). Interestingly, but surprisingly, Gomes and colleagues showed that MasR expression and mTor activity were reduced in the hippocampus of the epileptic Ang-(1-7) treated animals. These results show that Ang-(1-7) administration could represent a new avenue for developing strategies for the management of epilepsy in clinical settings. However, future work is necessary to evaluate the levels of RAS metabolites and the activity of key enzymes in these experimental interventions to completely understand the therapeutic potential of the brain RAS manipulation in epilepsy.</p>","PeriodicalId":519494,"journal":{"name":"Clinical Science (London, England : 1979)","volume":" ","pages":"725-730"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Brain angiotensin system: a new promise in the management of epilepsy?\",\"authors\":\"Alberto Javier Ramos\",\"doi\":\"10.1042/CS20201296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epilepsy is a highly prevalent neurological disease and anti-epileptic drugs (AED) are almost the unique clinical treatment option. A disbalanced brain renin-angiotensin system (RAS) has been proposed in epilepsy and several reports have shown that angiotensin II (Ang II) receptor-1 (ATR1) activation is pro-inflammatory and pro-epileptogenic. In agreement, ATR1 blockage with the repurposed drug losartan has shown benefits in animal models of epilepsy. Processing of Ang II by ACE2 enzyme renders Ang-(1-7), a metabolite that activates the mitochondrial assembly (Mas) receptor (MasR) pathway. MasR activation presents beneficial effects, facilitating vasodilatation, increasing anti-inflammatory and antioxidative responses. In a recent paper published in Clinical Science, Gomes and colleagues (Clin. Sci. (Lond.) (2020) 134, 2263-2277) performed intracerebroventricular (icv) infusion of Ang-(1-7) in animals subjected to the pilocarpine model of epilepsy, starting after the first spontaneous motor seizure (SMS). They showed that this approach reduced the frequency of SMS, restored animal anxiety, increased exploration, and augmented the hippocampal expression of protective catalase enzyme and antiapoptotic protein B-cell lymphoma 2 (Bcl-2). Interestingly, but surprisingly, Gomes and colleagues showed that MasR expression and mTor activity were reduced in the hippocampus of the epileptic Ang-(1-7) treated animals. These results show that Ang-(1-7) administration could represent a new avenue for developing strategies for the management of epilepsy in clinical settings. However, future work is necessary to evaluate the levels of RAS metabolites and the activity of key enzymes in these experimental interventions to completely understand the therapeutic potential of the brain RAS manipulation in epilepsy.</p>\",\"PeriodicalId\":519494,\"journal\":{\"name\":\"Clinical Science (London, England : 1979)\",\"volume\":\" \",\"pages\":\"725-730\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Science (London, England : 1979)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1042/CS20201296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Science (London, England : 1979)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20201296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

癫痫是一种高度流行的神经系统疾病,抗癫痫药物(AED)几乎是唯一的临床治疗选择。脑肾素-血管紧张素系统(RAS)失衡已被提出与癫痫有关,一些报道表明血管紧张素II (Ang II)受体-1 (ATR1)的激活是促炎症和促癫痫的。与此一致的是,使用改型药物氯沙坦阻断ATR1在癫痫动物模型中显示出益处。通过ACE2酶处理Ang II产生Ang-(1-7),这是一种激活线粒体组装(Mas)受体(MasR)途径的代谢物。激活MasR表现出有益的作用,促进血管扩张,增强抗炎和抗氧化反应。在最近发表在《临床科学》杂志上的一篇论文中,Gomes和他的同事。科学。(long .)(2020) 134, 2263-2277)在匹洛卡平癫痫模型动物的脑室内(icv)输注Ang-(1-7),从第一次自发性运动发作(SMS)开始。他们发现,这种方法减少了SMS的频率,恢复了动物的焦虑,增加了探索,并增加了海马保护性过氧化氢酶和抗凋亡蛋白b细胞淋巴瘤2 (Bcl-2)的表达。有趣但令人惊讶的是,Gomes和他的同事们发现,癫痫病用Ang-(1-7)治疗的动物的海马体中,MasR的表达和mTor的活性降低了。这些结果表明,Ang-(1-7)给药可能代表了在临床环境中制定癫痫管理策略的新途径。然而,未来的工作需要在这些实验干预中评估RAS代谢物的水平和关键酶的活性,以完全了解大脑RAS操作在癫痫中的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain angiotensin system: a new promise in the management of epilepsy?

Epilepsy is a highly prevalent neurological disease and anti-epileptic drugs (AED) are almost the unique clinical treatment option. A disbalanced brain renin-angiotensin system (RAS) has been proposed in epilepsy and several reports have shown that angiotensin II (Ang II) receptor-1 (ATR1) activation is pro-inflammatory and pro-epileptogenic. In agreement, ATR1 blockage with the repurposed drug losartan has shown benefits in animal models of epilepsy. Processing of Ang II by ACE2 enzyme renders Ang-(1-7), a metabolite that activates the mitochondrial assembly (Mas) receptor (MasR) pathway. MasR activation presents beneficial effects, facilitating vasodilatation, increasing anti-inflammatory and antioxidative responses. In a recent paper published in Clinical Science, Gomes and colleagues (Clin. Sci. (Lond.) (2020) 134, 2263-2277) performed intracerebroventricular (icv) infusion of Ang-(1-7) in animals subjected to the pilocarpine model of epilepsy, starting after the first spontaneous motor seizure (SMS). They showed that this approach reduced the frequency of SMS, restored animal anxiety, increased exploration, and augmented the hippocampal expression of protective catalase enzyme and antiapoptotic protein B-cell lymphoma 2 (Bcl-2). Interestingly, but surprisingly, Gomes and colleagues showed that MasR expression and mTor activity were reduced in the hippocampus of the epileptic Ang-(1-7) treated animals. These results show that Ang-(1-7) administration could represent a new avenue for developing strategies for the management of epilepsy in clinical settings. However, future work is necessary to evaluate the levels of RAS metabolites and the activity of key enzymes in these experimental interventions to completely understand the therapeutic potential of the brain RAS manipulation in epilepsy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信