通过前向-后向支持向量机进行多类别分类

IF 1.1 4区 数学 Q1 MATHEMATICS
Xuan Zhou, Yuanjia Wang, Donglin Zeng
{"title":"通过前向-后向支持向量机进行多类别分类","authors":"Xuan Zhou, Yuanjia Wang, Donglin Zeng","doi":"10.1007/s40304-019-00179-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a new algorithm to extend support vector machine (SVM) for binary classification to multicategory classification. The proposed method is based on a sequential binary classification algorithm: we first classify a target class by excluding the possibility of labeling as any other classes using a forward step of sequential SVM; we then exclude the already classified classes and repeat the same procedure for the remaining classes in a backward step. The proposed algorithm relies on SVM for each binary classification and utilizes only feasible data in each step; therefore, the method guarantees convergence and entails light computational burden. We prove Fisher consistency of the proposed forward-backward-SVM (FB-SVM) and obtain a stochastic bound for the predicted misclassification rate. We conduct extensive simulations and analyze real-world data to demonstrate the superior performance of FB-SVM, for example, FB-SVM achieves a classification accuracy much higher than the current standard for predicting conversion from mild cognitive impairment to Alzheimer's disease.</p>","PeriodicalId":10575,"journal":{"name":"Communications in Mathematics and Statistics","volume":"8 3","pages":"319-339"},"PeriodicalIF":1.1000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962596/pdf/nihms-1529357.pdf","citationCount":"0","resultStr":"{\"title\":\"Multicategory Classification via Forward-Backward Support Vector Machine.\",\"authors\":\"Xuan Zhou, Yuanjia Wang, Donglin Zeng\",\"doi\":\"10.1007/s40304-019-00179-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a new algorithm to extend support vector machine (SVM) for binary classification to multicategory classification. The proposed method is based on a sequential binary classification algorithm: we first classify a target class by excluding the possibility of labeling as any other classes using a forward step of sequential SVM; we then exclude the already classified classes and repeat the same procedure for the remaining classes in a backward step. The proposed algorithm relies on SVM for each binary classification and utilizes only feasible data in each step; therefore, the method guarantees convergence and entails light computational burden. We prove Fisher consistency of the proposed forward-backward-SVM (FB-SVM) and obtain a stochastic bound for the predicted misclassification rate. We conduct extensive simulations and analyze real-world data to demonstrate the superior performance of FB-SVM, for example, FB-SVM achieves a classification accuracy much higher than the current standard for predicting conversion from mild cognitive impairment to Alzheimer's disease.</p>\",\"PeriodicalId\":10575,\"journal\":{\"name\":\"Communications in Mathematics and Statistics\",\"volume\":\"8 3\",\"pages\":\"319-339\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962596/pdf/nihms-1529357.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40304-019-00179-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-019-00179-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新算法,将支持向量机(SVM)的二元分类扩展到多类别分类。所提出的方法基于顺序二元分类算法:首先,我们使用顺序 SVM 的前向步骤排除标记为任何其他类别的可能性,从而对目标类别进行分类;然后,我们排除已分类的类别,并在后向步骤中对剩余类别重复相同的过程。所提出的算法依靠 SVM 进行二元分类,并且在每一步中只使用可行的数据;因此,该方法保证了收敛性,并减轻了计算负担。我们证明了所提出的前向-后向-SVM(FB-SVM)的费雪一致性,并获得了预测误分类率的随机约束。我们进行了大量仿真并分析了真实世界的数据,证明了 FB-SVM 的卓越性能,例如,FB-SVM 在预测从轻度认知障碍到阿尔茨海默病的转换时,分类准确率远远高于现行标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicategory Classification via Forward-Backward Support Vector Machine.

In this paper, we propose a new algorithm to extend support vector machine (SVM) for binary classification to multicategory classification. The proposed method is based on a sequential binary classification algorithm: we first classify a target class by excluding the possibility of labeling as any other classes using a forward step of sequential SVM; we then exclude the already classified classes and repeat the same procedure for the remaining classes in a backward step. The proposed algorithm relies on SVM for each binary classification and utilizes only feasible data in each step; therefore, the method guarantees convergence and entails light computational burden. We prove Fisher consistency of the proposed forward-backward-SVM (FB-SVM) and obtain a stochastic bound for the predicted misclassification rate. We conduct extensive simulations and analyze real-world data to demonstrate the superior performance of FB-SVM, for example, FB-SVM achieves a classification accuracy much higher than the current standard for predicting conversion from mild cognitive impairment to Alzheimer's disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics and Statistics
Communications in Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.80
自引率
0.00%
发文量
36
期刊介绍: Communications in Mathematics and Statistics is an international journal published by Springer-Verlag in collaboration with the School of Mathematical Sciences, University of Science and Technology of China (USTC). The journal will be committed to publish high level original peer reviewed research papers in various areas of mathematical sciences, including pure mathematics, applied mathematics, computational mathematics, and probability and statistics. Typically one volume is published each year, and each volume consists of four issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信