Yan Chen, Shuhua Li, Yinbin Wei, Zhihong Xu, Xiongfei Wu
{"title":"Circ-RNF13作为一种癌基因,通过circ-RNF13/miR-424-5p/TGIF2的ceRNA途径调控HBV相关肝细胞癌细胞的恶性进展和HBV感染。","authors":"Yan Chen, Shuhua Li, Yinbin Wei, Zhihong Xu, Xiongfei Wu","doi":"10.17305/bjbms.2020.5266","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNA RNF13 (circ-RNF13; ID: hsa_circ_0067717) is newly identified to be abnormally upregulated in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) patients. However, its role and mechanism remain to be further annotated. First of all, real-time quantitative PCR (RT-qPCR) was utilized to examine RNA expression, and circ-RNF13 was upregulated in HBV-infected human HCC tissues and HBV-expressing cells (Huh7-HBV and Hep3B-HBV), accompanied with TGFβ-induced factor homeobox 2 (TGIF2) upregulation and microRNA (miR)-424-5p downregulation. Loss-of-functional experiments were performed using MTS assay, colony formation assay, flow cytometry, enzyme-linked immunosorbent assay, transwell assay, and xenograft tumor model. As a result, blocking circ-RNF13 enhanced the apoptosis rate of Huh7-HBV and Hep3B-HBV cells, but inhibited cell proliferation, colony formation, migration, and invasion in vitro, along with suppressed tumor growth in vivo. Besides, RT-qPCR data showed that HBV DNA copies and levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) were diminished by circ-RNF13 knockdown in Huh7-HBV and Hep3B-HBV cells. Mechanistically, circ-RNF13 and TGIF2 could directly interacting with miR-424-5p according to dual-luciferase reporter assay, suggesting that circ-RNF13 and TGIF2 served as competing endogenous RNAs (ceRNAs) for miR-424-5p. Functionally, overexpressing miR-424-5p mimicked and silencing miR-424-5p counteracted the effects of circ-RNF13 depletion in HBV-expressing HCC cells in vitro; TGIF2 restoration partially abrogated the role of miR-424-5p upregulation. In conclusion, circ-RNF13 might sponge miR-424-5p to suppress HBV-associated HCC cells malignant progression and HBV infection by regulating TGIF2, providing a novel insight into the occurrence and treatment of HBV-associated HCC.</p>","PeriodicalId":9147,"journal":{"name":"Bosnian journal of basic medical sciences","volume":"21 5","pages":"555-568"},"PeriodicalIF":3.1000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381212/pdf/","citationCount":"0","resultStr":"{\"title\":\"Circ-RNF13, as an oncogene, regulates malignant progression of HBV-associated hepatocellular carcinoma cells and HBV infection through ceRNA pathway of circ-RNF13/miR-424-5p/TGIF2.\",\"authors\":\"Yan Chen, Shuhua Li, Yinbin Wei, Zhihong Xu, Xiongfei Wu\",\"doi\":\"10.17305/bjbms.2020.5266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular RNA RNF13 (circ-RNF13; ID: hsa_circ_0067717) is newly identified to be abnormally upregulated in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) patients. However, its role and mechanism remain to be further annotated. First of all, real-time quantitative PCR (RT-qPCR) was utilized to examine RNA expression, and circ-RNF13 was upregulated in HBV-infected human HCC tissues and HBV-expressing cells (Huh7-HBV and Hep3B-HBV), accompanied with TGFβ-induced factor homeobox 2 (TGIF2) upregulation and microRNA (miR)-424-5p downregulation. Loss-of-functional experiments were performed using MTS assay, colony formation assay, flow cytometry, enzyme-linked immunosorbent assay, transwell assay, and xenograft tumor model. As a result, blocking circ-RNF13 enhanced the apoptosis rate of Huh7-HBV and Hep3B-HBV cells, but inhibited cell proliferation, colony formation, migration, and invasion in vitro, along with suppressed tumor growth in vivo. Besides, RT-qPCR data showed that HBV DNA copies and levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) were diminished by circ-RNF13 knockdown in Huh7-HBV and Hep3B-HBV cells. Mechanistically, circ-RNF13 and TGIF2 could directly interacting with miR-424-5p according to dual-luciferase reporter assay, suggesting that circ-RNF13 and TGIF2 served as competing endogenous RNAs (ceRNAs) for miR-424-5p. Functionally, overexpressing miR-424-5p mimicked and silencing miR-424-5p counteracted the effects of circ-RNF13 depletion in HBV-expressing HCC cells in vitro; TGIF2 restoration partially abrogated the role of miR-424-5p upregulation. In conclusion, circ-RNF13 might sponge miR-424-5p to suppress HBV-associated HCC cells malignant progression and HBV infection by regulating TGIF2, providing a novel insight into the occurrence and treatment of HBV-associated HCC.</p>\",\"PeriodicalId\":9147,\"journal\":{\"name\":\"Bosnian journal of basic medical sciences\",\"volume\":\"21 5\",\"pages\":\"555-568\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381212/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bosnian journal of basic medical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.17305/bjbms.2020.5266\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bosnian journal of basic medical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.17305/bjbms.2020.5266","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Circ-RNF13, as an oncogene, regulates malignant progression of HBV-associated hepatocellular carcinoma cells and HBV infection through ceRNA pathway of circ-RNF13/miR-424-5p/TGIF2.
Circular RNA RNF13 (circ-RNF13; ID: hsa_circ_0067717) is newly identified to be abnormally upregulated in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) patients. However, its role and mechanism remain to be further annotated. First of all, real-time quantitative PCR (RT-qPCR) was utilized to examine RNA expression, and circ-RNF13 was upregulated in HBV-infected human HCC tissues and HBV-expressing cells (Huh7-HBV and Hep3B-HBV), accompanied with TGFβ-induced factor homeobox 2 (TGIF2) upregulation and microRNA (miR)-424-5p downregulation. Loss-of-functional experiments were performed using MTS assay, colony formation assay, flow cytometry, enzyme-linked immunosorbent assay, transwell assay, and xenograft tumor model. As a result, blocking circ-RNF13 enhanced the apoptosis rate of Huh7-HBV and Hep3B-HBV cells, but inhibited cell proliferation, colony formation, migration, and invasion in vitro, along with suppressed tumor growth in vivo. Besides, RT-qPCR data showed that HBV DNA copies and levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) were diminished by circ-RNF13 knockdown in Huh7-HBV and Hep3B-HBV cells. Mechanistically, circ-RNF13 and TGIF2 could directly interacting with miR-424-5p according to dual-luciferase reporter assay, suggesting that circ-RNF13 and TGIF2 served as competing endogenous RNAs (ceRNAs) for miR-424-5p. Functionally, overexpressing miR-424-5p mimicked and silencing miR-424-5p counteracted the effects of circ-RNF13 depletion in HBV-expressing HCC cells in vitro; TGIF2 restoration partially abrogated the role of miR-424-5p upregulation. In conclusion, circ-RNF13 might sponge miR-424-5p to suppress HBV-associated HCC cells malignant progression and HBV infection by regulating TGIF2, providing a novel insight into the occurrence and treatment of HBV-associated HCC.
期刊介绍:
The Bosnian Journal of Basic Medical Sciences (BJBMS) is an international, English-language, peer reviewed journal, publishing original articles from different disciplines of basic medical sciences. BJBMS welcomes original research and comprehensive reviews as well as short research communications in the field of biochemistry, genetics, immunology, microbiology, pathology, pharmacology, pharmaceutical sciences and physiology.