Christopher T Turner, Juliana Bolsoni, Matthew R Zeglinski, Hongyan Zhao, Tatjana Ponomarev, Katlyn Richardson, Sho Hiroyasu, Erin Schmid, Anthony Papp, David J Granville
{"title":"颗粒酶B介导老化皮肤压伤愈合受损。","authors":"Christopher T Turner, Juliana Bolsoni, Matthew R Zeglinski, Hongyan Zhao, Tatjana Ponomarev, Katlyn Richardson, Sho Hiroyasu, Erin Schmid, Anthony Papp, David J Granville","doi":"10.1038/s41514-021-00059-6","DOIUrl":null,"url":null,"abstract":"<p><p>Pressure injuries (PIs), also known as bedsores or pressure ulcers, are a major cause of death and morbidity in the elderly. The serine protease, Granzyme B (GzmB), contributes to skin aging and impaired wound healing. Aging is a major risk factor for PIs; thus, the role of GzmB in PI pathogenesis was investigated. GzmB levels in human PI tissue and wound fluids were markedly elevated. A causative role for GzmB was assessed in GzmB knockout (GzmB-/-) and wild-type (WT) mice using a murine model of PI. An apolipoprotein E knockout (ApoE-/-) model of aging and vascular dysfunction was also utilized to assess GzmB in a relevant age-related model better resembling tissue perfusion in the elderly. PI severity displayed no difference between young GzmB-/- and WT mice. However, in aged mice, PI severity was reduced in mice lacking GzmB. Mechanistically, GzmB increased vascular wall inflammation and impaired extracellular matrix remodeling. Together, GzmB is an important contributor to age-dependent impaired PI healing.</p>","PeriodicalId":19334,"journal":{"name":"NPJ Aging and Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41514-021-00059-6","citationCount":"8","resultStr":"{\"title\":\"Granzyme B mediates impaired healing of pressure injuries in aged skin.\",\"authors\":\"Christopher T Turner, Juliana Bolsoni, Matthew R Zeglinski, Hongyan Zhao, Tatjana Ponomarev, Katlyn Richardson, Sho Hiroyasu, Erin Schmid, Anthony Papp, David J Granville\",\"doi\":\"10.1038/s41514-021-00059-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pressure injuries (PIs), also known as bedsores or pressure ulcers, are a major cause of death and morbidity in the elderly. The serine protease, Granzyme B (GzmB), contributes to skin aging and impaired wound healing. Aging is a major risk factor for PIs; thus, the role of GzmB in PI pathogenesis was investigated. GzmB levels in human PI tissue and wound fluids were markedly elevated. A causative role for GzmB was assessed in GzmB knockout (GzmB-/-) and wild-type (WT) mice using a murine model of PI. An apolipoprotein E knockout (ApoE-/-) model of aging and vascular dysfunction was also utilized to assess GzmB in a relevant age-related model better resembling tissue perfusion in the elderly. PI severity displayed no difference between young GzmB-/- and WT mice. However, in aged mice, PI severity was reduced in mice lacking GzmB. Mechanistically, GzmB increased vascular wall inflammation and impaired extracellular matrix remodeling. Together, GzmB is an important contributor to age-dependent impaired PI healing.</p>\",\"PeriodicalId\":19334,\"journal\":{\"name\":\"NPJ Aging and Mechanisms of Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/s41514-021-00059-6\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Aging and Mechanisms of Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41514-021-00059-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Aging and Mechanisms of Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-021-00059-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Granzyme B mediates impaired healing of pressure injuries in aged skin.
Pressure injuries (PIs), also known as bedsores or pressure ulcers, are a major cause of death and morbidity in the elderly. The serine protease, Granzyme B (GzmB), contributes to skin aging and impaired wound healing. Aging is a major risk factor for PIs; thus, the role of GzmB in PI pathogenesis was investigated. GzmB levels in human PI tissue and wound fluids were markedly elevated. A causative role for GzmB was assessed in GzmB knockout (GzmB-/-) and wild-type (WT) mice using a murine model of PI. An apolipoprotein E knockout (ApoE-/-) model of aging and vascular dysfunction was also utilized to assess GzmB in a relevant age-related model better resembling tissue perfusion in the elderly. PI severity displayed no difference between young GzmB-/- and WT mice. However, in aged mice, PI severity was reduced in mice lacking GzmB. Mechanistically, GzmB increased vascular wall inflammation and impaired extracellular matrix remodeling. Together, GzmB is an important contributor to age-dependent impaired PI healing.
期刊介绍:
npj Aging and Mechanisms of Disease is an online open access journal that provides a forum for the world’s most important research in the fields of aging and aging-related disease. The journal publishes papers from all relevant disciplines, encouraging those that shed light on the mechanisms behind aging and the associated diseases. The journal’s scope includes, but is not restricted to, the following areas (not listed in order of preference): • cellular and molecular mechanisms of aging and aging-related diseases • interventions to affect the process of aging and longevity • homeostatic regulation and aging • age-associated complications • translational research into prevention and treatment of aging-related diseases • mechanistic bases for epidemiological aspects of aging-related disease.