{"title":"为什么线虫是如此成功的极端微生物?","authors":"Amir Sapir","doi":"10.1080/19420889.2021.1884343","DOIUrl":null,"url":null,"abstract":"<p><p>Extreme environments constitute the largest habitat on earth, but our understanding of life in such environments is rudimentary. The hostility of extreme environments such as the deep sea, earth's crust, and toxic lakes limits the sampling, culturing, and studying of extremophiles, the organisms that live in these habitats. Thus, in terms of ecological research, extreme environments are the earth's final frontier. A growing body of data suggests that nematodes are the most common animal taxon in different types of extreme settings such as the deep-subsurface and sediments in the deep sea. Notably, the reasons for the abundance of nematodes in extreme habitats remain mostly unknown. I propose that a unique combination of several characteristics of nematodes may explain, additively or synergistically, their successful adaptation to extreme habitats. Novel functional genetic and genomic approaches are expected to reveal molecular mechanisms of adaptation of nematodes to the many fascinating extreme environments on earth.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"24-26"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19420889.2021.1884343","citationCount":"5","resultStr":"{\"title\":\"Why are nematodes so successful extremophiles?\",\"authors\":\"Amir Sapir\",\"doi\":\"10.1080/19420889.2021.1884343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extreme environments constitute the largest habitat on earth, but our understanding of life in such environments is rudimentary. The hostility of extreme environments such as the deep sea, earth's crust, and toxic lakes limits the sampling, culturing, and studying of extremophiles, the organisms that live in these habitats. Thus, in terms of ecological research, extreme environments are the earth's final frontier. A growing body of data suggests that nematodes are the most common animal taxon in different types of extreme settings such as the deep-subsurface and sediments in the deep sea. Notably, the reasons for the abundance of nematodes in extreme habitats remain mostly unknown. I propose that a unique combination of several characteristics of nematodes may explain, additively or synergistically, their successful adaptation to extreme habitats. Novel functional genetic and genomic approaches are expected to reveal molecular mechanisms of adaptation of nematodes to the many fascinating extreme environments on earth.</p>\",\"PeriodicalId\":39647,\"journal\":{\"name\":\"Communicative and Integrative Biology\",\"volume\":\"14 1\",\"pages\":\"24-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19420889.2021.1884343\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communicative and Integrative Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19420889.2021.1884343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communicative and Integrative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19420889.2021.1884343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Extreme environments constitute the largest habitat on earth, but our understanding of life in such environments is rudimentary. The hostility of extreme environments such as the deep sea, earth's crust, and toxic lakes limits the sampling, culturing, and studying of extremophiles, the organisms that live in these habitats. Thus, in terms of ecological research, extreme environments are the earth's final frontier. A growing body of data suggests that nematodes are the most common animal taxon in different types of extreme settings such as the deep-subsurface and sediments in the deep sea. Notably, the reasons for the abundance of nematodes in extreme habitats remain mostly unknown. I propose that a unique combination of several characteristics of nematodes may explain, additively or synergistically, their successful adaptation to extreme habitats. Novel functional genetic and genomic approaches are expected to reveal molecular mechanisms of adaptation of nematodes to the many fascinating extreme environments on earth.