Rômulo Batista Rodrigues, Mariana Uczay, Verônica Bidinotto Brito, Antonio Cesar Godoy, Dinara Jaqueline Moura, Carla Vogel, Ana Carina Nogueira Vasconcelos, Danilo Pedro Streit
{"title":"低温保存过程中不同阶段斑马鱼精子的氧化应激和DNA损伤。","authors":"Rômulo Batista Rodrigues, Mariana Uczay, Verônica Bidinotto Brito, Antonio Cesar Godoy, Dinara Jaqueline Moura, Carla Vogel, Ana Carina Nogueira Vasconcelos, Danilo Pedro Streit","doi":"10.1089/zeb.2020.1942","DOIUrl":null,"url":null,"abstract":"<p><p>Although gamete cryopreservation has facilitated advancement of reproduction research by allowing the storage of cells over prolonged periods of time, during freezing-thawing cycles, cells inevitably suffer from cryoinjuries. Here, we evaluate oxidative stress and DNA damage of zebrafish sperm at different stages of the cryopreservation process. It was generally observed that the freezing and thawing of the samples led to an increase in the generation of reactive oxygen species and the activity of the catalase enzyme and a reduction in the generation of sulfhydryl groups and superoxide dismutase activity. The alkaline comet assay demonstrated that DNA damage increased after equilibration time, with an even greater increase after freezing and thawing. The comet assay modified with the enzyme formamidopyrimidine glycosylase, and Endonuclease III demonstrated greater DNA damage than the standard comet assay, demonstrating a high degree of oxidation of purines and pyrimidines at all stages of cryopreservation. Our results show that the freeze and thaw processes cause greater oxidative stress and DNA damage than cryoprotectant toxicity during exposure at the equilibrium stage.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Oxidative Stress and DNA Damage of Zebrafish Sperm at Different Stages of the Cryopreservation Process.\",\"authors\":\"Rômulo Batista Rodrigues, Mariana Uczay, Verônica Bidinotto Brito, Antonio Cesar Godoy, Dinara Jaqueline Moura, Carla Vogel, Ana Carina Nogueira Vasconcelos, Danilo Pedro Streit\",\"doi\":\"10.1089/zeb.2020.1942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although gamete cryopreservation has facilitated advancement of reproduction research by allowing the storage of cells over prolonged periods of time, during freezing-thawing cycles, cells inevitably suffer from cryoinjuries. Here, we evaluate oxidative stress and DNA damage of zebrafish sperm at different stages of the cryopreservation process. It was generally observed that the freezing and thawing of the samples led to an increase in the generation of reactive oxygen species and the activity of the catalase enzyme and a reduction in the generation of sulfhydryl groups and superoxide dismutase activity. The alkaline comet assay demonstrated that DNA damage increased after equilibration time, with an even greater increase after freezing and thawing. The comet assay modified with the enzyme formamidopyrimidine glycosylase, and Endonuclease III demonstrated greater DNA damage than the standard comet assay, demonstrating a high degree of oxidation of purines and pyrimidines at all stages of cryopreservation. Our results show that the freeze and thaw processes cause greater oxidative stress and DNA damage than cryoprotectant toxicity during exposure at the equilibrium stage.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2020.1942\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2020.1942","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Oxidative Stress and DNA Damage of Zebrafish Sperm at Different Stages of the Cryopreservation Process.
Although gamete cryopreservation has facilitated advancement of reproduction research by allowing the storage of cells over prolonged periods of time, during freezing-thawing cycles, cells inevitably suffer from cryoinjuries. Here, we evaluate oxidative stress and DNA damage of zebrafish sperm at different stages of the cryopreservation process. It was generally observed that the freezing and thawing of the samples led to an increase in the generation of reactive oxygen species and the activity of the catalase enzyme and a reduction in the generation of sulfhydryl groups and superoxide dismutase activity. The alkaline comet assay demonstrated that DNA damage increased after equilibration time, with an even greater increase after freezing and thawing. The comet assay modified with the enzyme formamidopyrimidine glycosylase, and Endonuclease III demonstrated greater DNA damage than the standard comet assay, demonstrating a high degree of oxidation of purines and pyrimidines at all stages of cryopreservation. Our results show that the freeze and thaw processes cause greater oxidative stress and DNA damage than cryoprotectant toxicity during exposure at the equilibrium stage.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.