一氧化碳中毒:利用气象因子和大气污染物的预测模型。

Q2 Biochemistry, Genetics and Molecular Biology
Hai-Lin Ruan, Wang-Shen Deng, Yao Wang, Jian-Bing Chen, Wei-Liang Hong, Shan-Shan Ye, Zhuo-Jun Hu
{"title":"一氧化碳中毒:利用气象因子和大气污染物的预测模型。","authors":"Hai-Lin Ruan,&nbsp;Wang-Shen Deng,&nbsp;Yao Wang,&nbsp;Jian-Bing Chen,&nbsp;Wei-Liang Hong,&nbsp;Shan-Shan Ye,&nbsp;Zhuo-Jun Hu","doi":"10.1186/s12919-021-00206-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While the influence of meteorology on carbon monoxide (CO) poisoning has been reported, few data are available on the association between air pollutants and the prediction of CO poisoning. Our objective is to explore meteorological and pollutant patterns associated with CO poisoning and to establish a predictive model.</p><p><strong>Results: </strong>CO poisoning was found to be significantly associated with meteorological and pollutant patterns: low temperatures, low wind speeds, low air concentrations of sulfur dioxide (SO<sub>2</sub>) and ozone (O<sub>3</sub>8h), and high daily temperature changes and ambient CO (r absolute value range: 0.079 to 0.232, all P values < 0.01). Based on the above factors, a predictive model was established: \"logitPj = aj - 0.193 * temperature - 0.228 * wind speed + 0.221 * 24 h temperature change + 1.25 * CO - 0.0176 * SO<sub>2</sub> + 0.0008 *O<sub>3</sub>8h; j = 1, 2, 3, 4; a1 = -4.12, a2 = -2.93, a3 = -1.98, a4 = -0.92.\" The proposed prediction model based on combined factors showed better predictive capacity than a model using only meteorological factors as a predictor.</p><p><strong>Conclusion: </strong>Low temperatures, wind speed, and SO<sub>2</sub> and high daily temperature changes, O<sub>3</sub>8h, and CO are related to CO poisoning. Using both meteorological and pollutant factors as predictors could help facilitate the prevention of CO poisoning.</p>","PeriodicalId":9046,"journal":{"name":"BMC Proceedings","volume":"15 Suppl 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12919-021-00206-7","citationCount":"3","resultStr":"{\"title\":\"Carbon monoxide poisoning: a prediction model using meteorological factors and air pollutant.\",\"authors\":\"Hai-Lin Ruan,&nbsp;Wang-Shen Deng,&nbsp;Yao Wang,&nbsp;Jian-Bing Chen,&nbsp;Wei-Liang Hong,&nbsp;Shan-Shan Ye,&nbsp;Zhuo-Jun Hu\",\"doi\":\"10.1186/s12919-021-00206-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>While the influence of meteorology on carbon monoxide (CO) poisoning has been reported, few data are available on the association between air pollutants and the prediction of CO poisoning. Our objective is to explore meteorological and pollutant patterns associated with CO poisoning and to establish a predictive model.</p><p><strong>Results: </strong>CO poisoning was found to be significantly associated with meteorological and pollutant patterns: low temperatures, low wind speeds, low air concentrations of sulfur dioxide (SO<sub>2</sub>) and ozone (O<sub>3</sub>8h), and high daily temperature changes and ambient CO (r absolute value range: 0.079 to 0.232, all P values < 0.01). Based on the above factors, a predictive model was established: \\\"logitPj = aj - 0.193 * temperature - 0.228 * wind speed + 0.221 * 24 h temperature change + 1.25 * CO - 0.0176 * SO<sub>2</sub> + 0.0008 *O<sub>3</sub>8h; j = 1, 2, 3, 4; a1 = -4.12, a2 = -2.93, a3 = -1.98, a4 = -0.92.\\\" The proposed prediction model based on combined factors showed better predictive capacity than a model using only meteorological factors as a predictor.</p><p><strong>Conclusion: </strong>Low temperatures, wind speed, and SO<sub>2</sub> and high daily temperature changes, O<sub>3</sub>8h, and CO are related to CO poisoning. Using both meteorological and pollutant factors as predictors could help facilitate the prevention of CO poisoning.</p>\",\"PeriodicalId\":9046,\"journal\":{\"name\":\"BMC Proceedings\",\"volume\":\"15 Suppl 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12919-021-00206-7\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12919-021-00206-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12919-021-00206-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

摘要

背景:气象对一氧化碳(CO)中毒的影响已有报道,但关于空气污染物与CO中毒预测之间关系的数据很少。我们的目标是探索与一氧化碳中毒有关的气象和污染物模式,并建立一个预测模型。结果:CO中毒与气象和污染物模式显著相关:低温、低风速、低空气中二氧化硫(SO2)和臭氧浓度(O38h)、高日温度变化和环境CO (r绝对值范围为0.079 ~ 0.232,P值均为2 + 0.0008 *O38h;J = 1,2,3,4;A1 = -4.12 a2 = -2.93 a3 = -1.98 a4 = -0.92 "综合因子预测模型的预测能力优于单纯气象因子预测模型。结论:低温、风速、SO2和高日温差、O38h、CO与CO中毒有关。同时使用气象和污染物因子作为预测因子,有助于预防一氧化碳中毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Carbon monoxide poisoning: a prediction model using meteorological factors and air pollutant.

Carbon monoxide poisoning: a prediction model using meteorological factors and air pollutant.

Carbon monoxide poisoning: a prediction model using meteorological factors and air pollutant.

Carbon monoxide poisoning: a prediction model using meteorological factors and air pollutant.

Background: While the influence of meteorology on carbon monoxide (CO) poisoning has been reported, few data are available on the association between air pollutants and the prediction of CO poisoning. Our objective is to explore meteorological and pollutant patterns associated with CO poisoning and to establish a predictive model.

Results: CO poisoning was found to be significantly associated with meteorological and pollutant patterns: low temperatures, low wind speeds, low air concentrations of sulfur dioxide (SO2) and ozone (O38h), and high daily temperature changes and ambient CO (r absolute value range: 0.079 to 0.232, all P values < 0.01). Based on the above factors, a predictive model was established: "logitPj = aj - 0.193 * temperature - 0.228 * wind speed + 0.221 * 24 h temperature change + 1.25 * CO - 0.0176 * SO2 + 0.0008 *O38h; j = 1, 2, 3, 4; a1 = -4.12, a2 = -2.93, a3 = -1.98, a4 = -0.92." The proposed prediction model based on combined factors showed better predictive capacity than a model using only meteorological factors as a predictor.

Conclusion: Low temperatures, wind speed, and SO2 and high daily temperature changes, O38h, and CO are related to CO poisoning. Using both meteorological and pollutant factors as predictors could help facilitate the prevention of CO poisoning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Proceedings
BMC Proceedings Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.50
自引率
0.00%
发文量
6
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信