Richard L Magin, Matt G Hall, M Muge Karaman, Viktor Vegh
{"title":"磁共振现象的分数阶微积分模型:松弛和扩散。","authors":"Richard L Magin, Matt G Hall, M Muge Karaman, Viktor Vegh","doi":"10.1615/CritRevBiomedEng.2020033925","DOIUrl":null,"url":null,"abstract":"<p><p>Applications of fractional calculus in magnetic resonance imaging (MRI) have increased over the last twenty years. From the mathematical, computational, and biophysical perspectives, fractional calculus provides new tools for describing the complexity of biological tissues (cells, organelles, membranes and macromolecules). Specifically, fractional order models capture molecular dynamics (transport, rotation, and vibration) by incorporating power law convolution kernels into the time and space derivatives appearing in the equations that govern nuclear magnetic resonance (NMR) phenomena. Hence, it is natural to expect fractional calculus models of relaxation and diffusion to be applied to problems in NMR and MRI. Early studies considered the fractal dimensions of multi-scale materials in the non-linear growth of the mean squared displacement, assumed power-law decays of the spectral density, and suggested stretched exponential signal relaxation to describe non-Gaussian behavior. Subsequently, fractional order generalization of the Bloch, and Bloch-Torrey equations were developed to characterize NMR (and MRI) relaxation and diffusion. However, even for simple geometries, analytical solutions of fractional order equations in time and space are difficult to obtain, and predictions of the corresponding changes in image contrast are not always possible. Currently, a multifaceted approach using coarse graining, simulation, and accelerated computation is being developed to identify 'imaging' biomarkers of disease. This review surveys the principal fractional order models used to describe NMR and MRI phenomena, identifies connections and limitations, and finally points to future applications of the approach.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"48 5","pages":"285-326"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Fractional Calculus Models of Magnetic Resonance Phenomena: Relaxation and Diffusion.\",\"authors\":\"Richard L Magin, Matt G Hall, M Muge Karaman, Viktor Vegh\",\"doi\":\"10.1615/CritRevBiomedEng.2020033925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Applications of fractional calculus in magnetic resonance imaging (MRI) have increased over the last twenty years. From the mathematical, computational, and biophysical perspectives, fractional calculus provides new tools for describing the complexity of biological tissues (cells, organelles, membranes and macromolecules). Specifically, fractional order models capture molecular dynamics (transport, rotation, and vibration) by incorporating power law convolution kernels into the time and space derivatives appearing in the equations that govern nuclear magnetic resonance (NMR) phenomena. Hence, it is natural to expect fractional calculus models of relaxation and diffusion to be applied to problems in NMR and MRI. Early studies considered the fractal dimensions of multi-scale materials in the non-linear growth of the mean squared displacement, assumed power-law decays of the spectral density, and suggested stretched exponential signal relaxation to describe non-Gaussian behavior. Subsequently, fractional order generalization of the Bloch, and Bloch-Torrey equations were developed to characterize NMR (and MRI) relaxation and diffusion. However, even for simple geometries, analytical solutions of fractional order equations in time and space are difficult to obtain, and predictions of the corresponding changes in image contrast are not always possible. Currently, a multifaceted approach using coarse graining, simulation, and accelerated computation is being developed to identify 'imaging' biomarkers of disease. This review surveys the principal fractional order models used to describe NMR and MRI phenomena, identifies connections and limitations, and finally points to future applications of the approach.</p>\",\"PeriodicalId\":53679,\"journal\":{\"name\":\"Critical Reviews in Biomedical Engineering\",\"volume\":\"48 5\",\"pages\":\"285-326\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2020033925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2020033925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Fractional Calculus Models of Magnetic Resonance Phenomena: Relaxation and Diffusion.
Applications of fractional calculus in magnetic resonance imaging (MRI) have increased over the last twenty years. From the mathematical, computational, and biophysical perspectives, fractional calculus provides new tools for describing the complexity of biological tissues (cells, organelles, membranes and macromolecules). Specifically, fractional order models capture molecular dynamics (transport, rotation, and vibration) by incorporating power law convolution kernels into the time and space derivatives appearing in the equations that govern nuclear magnetic resonance (NMR) phenomena. Hence, it is natural to expect fractional calculus models of relaxation and diffusion to be applied to problems in NMR and MRI. Early studies considered the fractal dimensions of multi-scale materials in the non-linear growth of the mean squared displacement, assumed power-law decays of the spectral density, and suggested stretched exponential signal relaxation to describe non-Gaussian behavior. Subsequently, fractional order generalization of the Bloch, and Bloch-Torrey equations were developed to characterize NMR (and MRI) relaxation and diffusion. However, even for simple geometries, analytical solutions of fractional order equations in time and space are difficult to obtain, and predictions of the corresponding changes in image contrast are not always possible. Currently, a multifaceted approach using coarse graining, simulation, and accelerated computation is being developed to identify 'imaging' biomarkers of disease. This review surveys the principal fractional order models used to describe NMR and MRI phenomena, identifies connections and limitations, and finally points to future applications of the approach.
期刊介绍:
Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.