Dhurgham Al-Karawi, Hisham Al-Assam, Hongbo Du, Ahmad Sayasneh, Chiara Landolfo, Dirk Timmerman, Tom Bourne, Sabah Jassim
{"title":"基于图像的静态b超图像纹理特征识别卵巢良恶性肿块的有效性评价。","authors":"Dhurgham Al-Karawi, Hisham Al-Assam, Hongbo Du, Ahmad Sayasneh, Chiara Landolfo, Dirk Timmerman, Tom Bourne, Sabah Jassim","doi":"10.1177/0161734621998091","DOIUrl":null,"url":null,"abstract":"<p><p>Significant successes in machine learning approaches to image analysis for various applications have energized strong interest in automated diagnostic support systems for medical images. The evolving in-depth understanding of the way carcinogenesis changes the texture of cellular networks of a mass/tumor has been informing such diagnostics systems with use of more suitable image texture features and their extraction methods. Several texture features have been recently applied in discriminating malignant and benign ovarian masses by analysing B-mode images from ultrasound scan of the ovary with different levels of performance. However, comparative performance evaluation of these reported features using common sets of clinically approved images is lacking. This paper presents an empirical evaluation of seven commonly used texture features (histograms, moments of histogram, local binary patterns [256-bin and 59-bin], histograms of oriented gradients, fractal dimensions, and Gabor filter), using a collection of 242 ultrasound scan images of ovarian masses of various pathological characteristics. The evaluation examines not only the effectiveness of classification schemes based on the individual texture features but also the effectiveness of various combinations of these schemes using the simple majority-rule decision level fusion. Trained support vector machine classifiers on the individual texture features without any specific pre-processing, achieve levels of accuracy between 75% and 85% where the seven moments and the 256-bin LBP are at the lower end while the Gabor filter is at the upper end. Combining the classification results of the top <i>k</i> (<i>k</i> = 3, 5, 7) best performing features further improve the overall accuracy to a level between 86% and 90%. These evaluation results demonstrate that each of the investigated image-based texture features provides informative support in distinguishing benign or malignant ovarian masses.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0161734621998091","citationCount":"6","resultStr":"{\"title\":\"An Evaluation of the Effectiveness of Image-based Texture Features Extracted from Static B-mode Ultrasound Images in Distinguishing between Benign and Malignant Ovarian Masses.\",\"authors\":\"Dhurgham Al-Karawi, Hisham Al-Assam, Hongbo Du, Ahmad Sayasneh, Chiara Landolfo, Dirk Timmerman, Tom Bourne, Sabah Jassim\",\"doi\":\"10.1177/0161734621998091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Significant successes in machine learning approaches to image analysis for various applications have energized strong interest in automated diagnostic support systems for medical images. The evolving in-depth understanding of the way carcinogenesis changes the texture of cellular networks of a mass/tumor has been informing such diagnostics systems with use of more suitable image texture features and their extraction methods. Several texture features have been recently applied in discriminating malignant and benign ovarian masses by analysing B-mode images from ultrasound scan of the ovary with different levels of performance. However, comparative performance evaluation of these reported features using common sets of clinically approved images is lacking. This paper presents an empirical evaluation of seven commonly used texture features (histograms, moments of histogram, local binary patterns [256-bin and 59-bin], histograms of oriented gradients, fractal dimensions, and Gabor filter), using a collection of 242 ultrasound scan images of ovarian masses of various pathological characteristics. The evaluation examines not only the effectiveness of classification schemes based on the individual texture features but also the effectiveness of various combinations of these schemes using the simple majority-rule decision level fusion. Trained support vector machine classifiers on the individual texture features without any specific pre-processing, achieve levels of accuracy between 75% and 85% where the seven moments and the 256-bin LBP are at the lower end while the Gabor filter is at the upper end. Combining the classification results of the top <i>k</i> (<i>k</i> = 3, 5, 7) best performing features further improve the overall accuracy to a level between 86% and 90%. These evaluation results demonstrate that each of the investigated image-based texture features provides informative support in distinguishing benign or malignant ovarian masses.</p>\",\"PeriodicalId\":49401,\"journal\":{\"name\":\"Ultrasonic Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0161734621998091\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonic Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0161734621998091\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0161734621998091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
An Evaluation of the Effectiveness of Image-based Texture Features Extracted from Static B-mode Ultrasound Images in Distinguishing between Benign and Malignant Ovarian Masses.
Significant successes in machine learning approaches to image analysis for various applications have energized strong interest in automated diagnostic support systems for medical images. The evolving in-depth understanding of the way carcinogenesis changes the texture of cellular networks of a mass/tumor has been informing such diagnostics systems with use of more suitable image texture features and their extraction methods. Several texture features have been recently applied in discriminating malignant and benign ovarian masses by analysing B-mode images from ultrasound scan of the ovary with different levels of performance. However, comparative performance evaluation of these reported features using common sets of clinically approved images is lacking. This paper presents an empirical evaluation of seven commonly used texture features (histograms, moments of histogram, local binary patterns [256-bin and 59-bin], histograms of oriented gradients, fractal dimensions, and Gabor filter), using a collection of 242 ultrasound scan images of ovarian masses of various pathological characteristics. The evaluation examines not only the effectiveness of classification schemes based on the individual texture features but also the effectiveness of various combinations of these schemes using the simple majority-rule decision level fusion. Trained support vector machine classifiers on the individual texture features without any specific pre-processing, achieve levels of accuracy between 75% and 85% where the seven moments and the 256-bin LBP are at the lower end while the Gabor filter is at the upper end. Combining the classification results of the top k (k = 3, 5, 7) best performing features further improve the overall accuracy to a level between 86% and 90%. These evaluation results demonstrate that each of the investigated image-based texture features provides informative support in distinguishing benign or malignant ovarian masses.
期刊介绍:
Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging