部分观测数据的凸聚类和恢复。

Sunrita Poddar, Mathews Jacob
{"title":"部分观测数据的凸聚类和恢复。","authors":"Sunrita Poddar,&nbsp;Mathews Jacob","doi":"10.1109/icip.2016.7533010","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a convex clustering and reconstruction algorithm for data with missing entries. The algorithm uses a similarity measure between every pair of points to cluster and recover the data. The cluster centres can be recovered reliably when the ground-truth similarity matrix is available. Moreover, the similarity matrix can also be reliably estimated from the partially observed data, when the clusters are well-separated and the coherence of the difference between points from different clusters is low. The algorithm performs well using the estimated similarity matrix on a simulated dataset. The method is also successful in reconstructing images from under-sampled Fourier data.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2016 ","pages":"3498-3502"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icip.2016.7533010","citationCount":"1","resultStr":"{\"title\":\"CONVEX CLUSTERING AND RECOVERY OF PARTIALLY OBSERVED DATA.\",\"authors\":\"Sunrita Poddar,&nbsp;Mathews Jacob\",\"doi\":\"10.1109/icip.2016.7533010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a convex clustering and reconstruction algorithm for data with missing entries. The algorithm uses a similarity measure between every pair of points to cluster and recover the data. The cluster centres can be recovered reliably when the ground-truth similarity matrix is available. Moreover, the similarity matrix can also be reliably estimated from the partially observed data, when the clusters are well-separated and the coherence of the difference between points from different clusters is low. The algorithm performs well using the estimated similarity matrix on a simulated dataset. The method is also successful in reconstructing images from under-sampled Fourier data.</p>\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"2016 \",\"pages\":\"3498-3502\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/icip.2016.7533010\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icip.2016.7533010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip.2016.7533010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种凸聚类重构算法来处理缺失条目的数据。该算法利用每对点之间的相似性度量对数据进行聚类和恢复。当地真相似矩阵可用时,可以可靠地恢复聚类中心。此外,当聚类分离较好,不同聚类点之间的差异相干性较低时,从部分观测数据中也可以可靠地估计出相似矩阵。该算法在模拟数据集上使用估计的相似矩阵取得了良好的效果。该方法在从欠采样傅里叶数据重建图像方面也取得了成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CONVEX CLUSTERING AND RECOVERY OF PARTIALLY OBSERVED DATA.

CONVEX CLUSTERING AND RECOVERY OF PARTIALLY OBSERVED DATA.

CONVEX CLUSTERING AND RECOVERY OF PARTIALLY OBSERVED DATA.

CONVEX CLUSTERING AND RECOVERY OF PARTIALLY OBSERVED DATA.

We propose a convex clustering and reconstruction algorithm for data with missing entries. The algorithm uses a similarity measure between every pair of points to cluster and recover the data. The cluster centres can be recovered reliably when the ground-truth similarity matrix is available. Moreover, the similarity matrix can also be reliably estimated from the partially observed data, when the clusters are well-separated and the coherence of the difference between points from different clusters is low. The algorithm performs well using the estimated similarity matrix on a simulated dataset. The method is also successful in reconstructing images from under-sampled Fourier data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信