具有时变参数和诱导点的高斯过程状态空间模型

Yuhao Liu, Petar M Djurić
{"title":"具有时变参数和诱导点的高斯过程状态空间模型","authors":"Yuhao Liu, Petar M Djurić","doi":"10.23919/Eusipco47968.2020.9287481","DOIUrl":null,"url":null,"abstract":"<p><p>We propose time-varying Gaussian process state-space models (TVGPSSM) whose hyper-parameters vary with time. The models have the ability to estimate time-varying functions and thereby increase flexibility to extract information from observed data. The proposed inference approach makes use of time-varying inducing points to adapt to changes of the function, and it exploits hierarchical importance sampling. The experimental results show that the approach has better performance than that of the standard Gaussian process.</p>","PeriodicalId":87340,"journal":{"name":"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)","volume":"2020 ","pages":"1462-1466"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890411/pdf/nihms-1670261.pdf","citationCount":"0","resultStr":"{\"title\":\"Gaussian Process State-Space Models with Time-Varying Parameters and Inducing Points.\",\"authors\":\"Yuhao Liu, Petar M Djurić\",\"doi\":\"10.23919/Eusipco47968.2020.9287481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose time-varying Gaussian process state-space models (TVGPSSM) whose hyper-parameters vary with time. The models have the ability to estimate time-varying functions and thereby increase flexibility to extract information from observed data. The proposed inference approach makes use of time-varying inducing points to adapt to changes of the function, and it exploits hierarchical importance sampling. The experimental results show that the approach has better performance than that of the standard Gaussian process.</p>\",\"PeriodicalId\":87340,\"journal\":{\"name\":\"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)\",\"volume\":\"2020 \",\"pages\":\"1462-1466\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890411/pdf/nihms-1670261.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了超参数随时间变化的时变高斯过程状态空间模型(TVGPSSM)。这些模型能够估计时变函数,从而提高了从观测数据中提取信息的灵活性。所提出的推理方法利用时变诱导点来适应函数的变化,并利用了分层重要性采样。实验结果表明,该方法的性能优于标准高斯过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Process State-Space Models with Time-Varying Parameters and Inducing Points.

We propose time-varying Gaussian process state-space models (TVGPSSM) whose hyper-parameters vary with time. The models have the ability to estimate time-varying functions and thereby increase flexibility to extract information from observed data. The proposed inference approach makes use of time-varying inducing points to adapt to changes of the function, and it exploits hierarchical importance sampling. The experimental results show that the approach has better performance than that of the standard Gaussian process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信