Arvind Balachandrasekaran, Greg Ongie, Mathews Jacob
{"title":"利用结构化低秩矩阵补全加速动态成像。","authors":"Arvind Balachandrasekaran, Greg Ongie, Mathews Jacob","doi":"10.1109/icip.2016.7532680","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a fast structured low-rank matrix completion algorithm with low memory & computational demand to recover the dynamic MRI data from undersampled measurements. The 3-D dataset is modeled as a piecewise smooth signal, whose discontinuities are localized to the zero sets of a bandlimited function. We show that a structured matrix corresponding to convolution with the Fourier coefficients of the signal derivatives is highly low-rank. This property enables us to recover the signal from undersampled measurements. The application of this scheme in dynamic MRI shows significant improvement over state of the art methods.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2016 ","pages":"1858-1862"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885618/pdf/nihms-1667948.pdf","citationCount":"0","resultStr":"{\"title\":\"ACCELERATED DYNAMIC MRI USING STRUCTURED LOW RANK MATRIX COMPLETION.\",\"authors\":\"Arvind Balachandrasekaran, Greg Ongie, Mathews Jacob\",\"doi\":\"10.1109/icip.2016.7532680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a fast structured low-rank matrix completion algorithm with low memory & computational demand to recover the dynamic MRI data from undersampled measurements. The 3-D dataset is modeled as a piecewise smooth signal, whose discontinuities are localized to the zero sets of a bandlimited function. We show that a structured matrix corresponding to convolution with the Fourier coefficients of the signal derivatives is highly low-rank. This property enables us to recover the signal from undersampled measurements. The application of this scheme in dynamic MRI shows significant improvement over state of the art methods.</p>\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"2016 \",\"pages\":\"1858-1862\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885618/pdf/nihms-1667948.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icip.2016.7532680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip.2016.7532680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
ACCELERATED DYNAMIC MRI USING STRUCTURED LOW RANK MATRIX COMPLETION.
We introduce a fast structured low-rank matrix completion algorithm with low memory & computational demand to recover the dynamic MRI data from undersampled measurements. The 3-D dataset is modeled as a piecewise smooth signal, whose discontinuities are localized to the zero sets of a bandlimited function. We show that a structured matrix corresponding to convolution with the Fourier coefficients of the signal derivatives is highly low-rank. This property enables us to recover the signal from undersampled measurements. The application of this scheme in dynamic MRI shows significant improvement over state of the art methods.