Aleksandra Kuzan, Jerzy Wisniewski, Krzysztof Maksymowicz, Magdalena Kobielarz, Andrzej Gamian, Agnieszka Chwilkowska
{"title":"人主动脉钙化、动脉粥样硬化与基质蛋白的关系。","authors":"Aleksandra Kuzan, Jerzy Wisniewski, Krzysztof Maksymowicz, Magdalena Kobielarz, Andrzej Gamian, Agnieszka Chwilkowska","doi":"10.5603/FHC.a2021.0002","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Extracellular matrix (ECM) proteins have been associated with atherosclerotic complications, such as plaque rupture, calcification and aneurysm. It is not clear what role different types of collagen play in the pathomechanism of atherosclerosis. The aim of the study was to analyze the content of elastin and major types of collagen in the aortic wall and how they associated are with course of atherosclerosis.</p><p><strong>Material and methods: </strong>In this work we present six biochemical parameters related to ECM proteins and collagen-specific amino acids (collagen type I, III, and IV, elastin, proline and hydroxyproline) analyzed in 106 patients' aortic wall specimens characterized by different degree of atherosclerosis. Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS), ELISA and immunohistochemical methods were used. The severity of atherosclerosis was assessed on the six-point scale of the American Heart Association, taking into account the number and location of foam cells, the presence of a fatty core, calcium deposits and other characteristic atherosclerotic features.</p><p><strong>Results: </strong>The results show that there is a relationship between the content of collagen-specific amino acids and development of atherosclerosis. The degree of atherosclerotic lesions was negatively correlated with the content of proline, hydroxyproline and the ratio of these two amino acids. Calcium deposits and surrounding tissue were compared and it was demonstrated that the ratio of type I collagen to type III collagen was higher in the aortic tissue than in aortic calcification areas, while the ratio of collagen type III to elastin was smaller in the artery than in the calcium deposits.</p><p><strong>Conclusions: </strong>We suggest that increase in collagen type III presence in the calcification matrix may stem from disorders in the structure of the type I and III collagen fibers. These anomalous fibers are likely to favor accumulation of the calcium salts, an important feature of the process of atheromatosis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Relationship between calcification, atherosclerosis and matrix proteins in the human aorta.\",\"authors\":\"Aleksandra Kuzan, Jerzy Wisniewski, Krzysztof Maksymowicz, Magdalena Kobielarz, Andrzej Gamian, Agnieszka Chwilkowska\",\"doi\":\"10.5603/FHC.a2021.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Extracellular matrix (ECM) proteins have been associated with atherosclerotic complications, such as plaque rupture, calcification and aneurysm. It is not clear what role different types of collagen play in the pathomechanism of atherosclerosis. The aim of the study was to analyze the content of elastin and major types of collagen in the aortic wall and how they associated are with course of atherosclerosis.</p><p><strong>Material and methods: </strong>In this work we present six biochemical parameters related to ECM proteins and collagen-specific amino acids (collagen type I, III, and IV, elastin, proline and hydroxyproline) analyzed in 106 patients' aortic wall specimens characterized by different degree of atherosclerosis. Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS), ELISA and immunohistochemical methods were used. The severity of atherosclerosis was assessed on the six-point scale of the American Heart Association, taking into account the number and location of foam cells, the presence of a fatty core, calcium deposits and other characteristic atherosclerotic features.</p><p><strong>Results: </strong>The results show that there is a relationship between the content of collagen-specific amino acids and development of atherosclerosis. The degree of atherosclerotic lesions was negatively correlated with the content of proline, hydroxyproline and the ratio of these two amino acids. Calcium deposits and surrounding tissue were compared and it was demonstrated that the ratio of type I collagen to type III collagen was higher in the aortic tissue than in aortic calcification areas, while the ratio of collagen type III to elastin was smaller in the artery than in the calcium deposits.</p><p><strong>Conclusions: </strong>We suggest that increase in collagen type III presence in the calcification matrix may stem from disorders in the structure of the type I and III collagen fibers. These anomalous fibers are likely to favor accumulation of the calcium salts, an important feature of the process of atheromatosis.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5603/FHC.a2021.0002\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5603/FHC.a2021.0002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Relationship between calcification, atherosclerosis and matrix proteins in the human aorta.
Introduction: Extracellular matrix (ECM) proteins have been associated with atherosclerotic complications, such as plaque rupture, calcification and aneurysm. It is not clear what role different types of collagen play in the pathomechanism of atherosclerosis. The aim of the study was to analyze the content of elastin and major types of collagen in the aortic wall and how they associated are with course of atherosclerosis.
Material and methods: In this work we present six biochemical parameters related to ECM proteins and collagen-specific amino acids (collagen type I, III, and IV, elastin, proline and hydroxyproline) analyzed in 106 patients' aortic wall specimens characterized by different degree of atherosclerosis. Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS), ELISA and immunohistochemical methods were used. The severity of atherosclerosis was assessed on the six-point scale of the American Heart Association, taking into account the number and location of foam cells, the presence of a fatty core, calcium deposits and other characteristic atherosclerotic features.
Results: The results show that there is a relationship between the content of collagen-specific amino acids and development of atherosclerosis. The degree of atherosclerotic lesions was negatively correlated with the content of proline, hydroxyproline and the ratio of these two amino acids. Calcium deposits and surrounding tissue were compared and it was demonstrated that the ratio of type I collagen to type III collagen was higher in the aortic tissue than in aortic calcification areas, while the ratio of collagen type III to elastin was smaller in the artery than in the calcium deposits.
Conclusions: We suggest that increase in collagen type III presence in the calcification matrix may stem from disorders in the structure of the type I and III collagen fibers. These anomalous fibers are likely to favor accumulation of the calcium salts, an important feature of the process of atheromatosis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.