无脊椎动物小眼症转录因子基因内含子由较长的祖先序列进化而来。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2021-01-22 eCollection Date: 2021-01-01 DOI:10.1177/1176934320988558
Jun-Ming Mao, Yong Wang, Liu Yang, Qin Yao, Ke-Ping Chen
{"title":"无脊椎动物小眼症转录因子基因内含子由较长的祖先序列进化而来。","authors":"Jun-Ming Mao,&nbsp;Yong Wang,&nbsp;Liu Yang,&nbsp;Qin Yao,&nbsp;Ke-Ping Chen","doi":"10.1177/1176934320988558","DOIUrl":null,"url":null,"abstract":"<p><p>Introns are highly variable in number and size. Sequence simulation is an effective method to elucidate intron evolution patterns. Previously, we have reported that introns are more likely to evolve through mutation-and-deletion (MD) rather than through mutation-and-insertion (MI). In the present study, we further studied evolution models by allowing insertion in the MD model and by allowing deletion in the MI model at various frequencies. It was found that all deletion-biased models with proper parameter settings could generate sequences with attributes matchable to 16 invertebrate introns from the microphthalmia transcription factor gene, whereas all insertion-biased models with any parameter settings failed to generate such sequences. We conclude that the examined invertebrate introns may have evolved from a longer ancestral sequence in a deletion-biased pattern. The constructed models are useful for studying the evolution of introns from other genes and/or from other taxonomic groups. (C++ scripts of all deletion- and insertion-biased models are available upon request.).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1176934320988558","citationCount":"0","resultStr":"{\"title\":\"An Intron of Invertebrate Microphthalmia Transcription Factor Gene Is Evolved from a Longer Ancestral Sequence.\",\"authors\":\"Jun-Ming Mao,&nbsp;Yong Wang,&nbsp;Liu Yang,&nbsp;Qin Yao,&nbsp;Ke-Ping Chen\",\"doi\":\"10.1177/1176934320988558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Introns are highly variable in number and size. Sequence simulation is an effective method to elucidate intron evolution patterns. Previously, we have reported that introns are more likely to evolve through mutation-and-deletion (MD) rather than through mutation-and-insertion (MI). In the present study, we further studied evolution models by allowing insertion in the MD model and by allowing deletion in the MI model at various frequencies. It was found that all deletion-biased models with proper parameter settings could generate sequences with attributes matchable to 16 invertebrate introns from the microphthalmia transcription factor gene, whereas all insertion-biased models with any parameter settings failed to generate such sequences. We conclude that the examined invertebrate introns may have evolved from a longer ancestral sequence in a deletion-biased pattern. The constructed models are useful for studying the evolution of introns from other genes and/or from other taxonomic groups. (C++ scripts of all deletion- and insertion-biased models are available upon request.).</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1176934320988558\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/1176934320988558\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/1176934320988558","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

内含子的数量和大小变化很大。序列模拟是阐明内含子进化模式的有效方法。以前,我们报道过内含子更可能通过突变和删除(MD)而不是通过突变和插入(MI)进化。在本研究中,我们通过允许在MD模型中插入和允许在MI模型中删除不同频率的进化模型进一步研究了进化模型。结果发现,在参数设置适当的情况下,所有缺失偏倚模型都能生成与来自小眼转录因子基因的16个无脊椎动物内含子属性匹配的序列,而在任何参数设置的情况下,所有插入偏倚模型都不能生成此类序列。我们的结论是,研究的无脊椎动物内含子可能是从一个更长的祖先序列中以缺失偏倚的模式进化而来的。所构建的模型可用于研究来自其他基因和/或其他分类群的内含子的进化。(所有删除和插入偏向模型的c++脚本可根据要求提供。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Intron of Invertebrate Microphthalmia Transcription Factor Gene Is Evolved from a Longer Ancestral Sequence.

An Intron of Invertebrate Microphthalmia Transcription Factor Gene Is Evolved from a Longer Ancestral Sequence.

An Intron of Invertebrate Microphthalmia Transcription Factor Gene Is Evolved from a Longer Ancestral Sequence.

An Intron of Invertebrate Microphthalmia Transcription Factor Gene Is Evolved from a Longer Ancestral Sequence.

Introns are highly variable in number and size. Sequence simulation is an effective method to elucidate intron evolution patterns. Previously, we have reported that introns are more likely to evolve through mutation-and-deletion (MD) rather than through mutation-and-insertion (MI). In the present study, we further studied evolution models by allowing insertion in the MD model and by allowing deletion in the MI model at various frequencies. It was found that all deletion-biased models with proper parameter settings could generate sequences with attributes matchable to 16 invertebrate introns from the microphthalmia transcription factor gene, whereas all insertion-biased models with any parameter settings failed to generate such sequences. We conclude that the examined invertebrate introns may have evolved from a longer ancestral sequence in a deletion-biased pattern. The constructed models are useful for studying the evolution of introns from other genes and/or from other taxonomic groups. (C++ scripts of all deletion- and insertion-biased models are available upon request.).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信