算术中的事实检索或压缩计数——两种假设的神经生理学研究。

Roland H Grabner, Clemens Brunner, Valerie Lorenz, Stephan E Vogel, Bert De Smedt
{"title":"算术中的事实检索或压缩计数——两种假设的神经生理学研究。","authors":"Roland H Grabner,&nbsp;Clemens Brunner,&nbsp;Valerie Lorenz,&nbsp;Stephan E Vogel,&nbsp;Bert De Smedt","doi":"10.1037/xlm0000982","DOIUrl":null,"url":null,"abstract":"<p><p>There is broad consensus on the assumption that adults solve single-digit multiplication problems almost exclusively by fact retrieval from memory. In contrast, there has been a long-standing debate on the cognitive processes involved in solving single-digit addition problems. This debate has evolved around two theoretical accounts. Proponents of a fact-retrieval account postulate that these are also solved through fact retrieval, whereas proponents of a compacted-counting account propose that solving very small additions (with operands between 1 and 4) involves highly automatized and unconscious compacted counting. In the present electroencephalography (EEG) study, we put these two accounts to the test by comparing neurophysiological correlates of solving very small additions and multiplications. Forty adults worked on an arithmetic production task involving all (nontie) single-digit additions and multiplications. Afterward, participants completed trial-by-trial strategy self-reports. In our EEG analyses, we focused on induced activity (event-related synchronization/desynchronization, ERS/ERD) in three frequency bands (theta, lower alpha, upper alpha). Across all frequency bands, we found higher evidential strength for similar rather than different neurophysiological processes accompanying the solution of very small addition and multiplication problems. In the alpha bands, evidence for similarity was even stronger when operand-1-problems were excluded. In two additional analyses, we showed that ERS/ERD can differentiate between self-reported problem-solving strategies (retrieval vs. procedure) and between very small <i>n</i> × 1 and <i>n</i> + 1 problems, demonstrating its high sensitivity to cognitive processes in arithmetic. The present findings support a fact-retrieval account, suggesting that both very small additions and multiplications are solved through fact retrieval. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":504300,"journal":{"name":"Journal of Experimental Psychology: Learning, Memory, and Cognition","volume":" ","pages":"199-212"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fact retrieval or compacted counting in arithmetic-A neurophysiological investigation of two hypotheses.\",\"authors\":\"Roland H Grabner,&nbsp;Clemens Brunner,&nbsp;Valerie Lorenz,&nbsp;Stephan E Vogel,&nbsp;Bert De Smedt\",\"doi\":\"10.1037/xlm0000982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is broad consensus on the assumption that adults solve single-digit multiplication problems almost exclusively by fact retrieval from memory. In contrast, there has been a long-standing debate on the cognitive processes involved in solving single-digit addition problems. This debate has evolved around two theoretical accounts. Proponents of a fact-retrieval account postulate that these are also solved through fact retrieval, whereas proponents of a compacted-counting account propose that solving very small additions (with operands between 1 and 4) involves highly automatized and unconscious compacted counting. In the present electroencephalography (EEG) study, we put these two accounts to the test by comparing neurophysiological correlates of solving very small additions and multiplications. Forty adults worked on an arithmetic production task involving all (nontie) single-digit additions and multiplications. Afterward, participants completed trial-by-trial strategy self-reports. In our EEG analyses, we focused on induced activity (event-related synchronization/desynchronization, ERS/ERD) in three frequency bands (theta, lower alpha, upper alpha). Across all frequency bands, we found higher evidential strength for similar rather than different neurophysiological processes accompanying the solution of very small addition and multiplication problems. In the alpha bands, evidence for similarity was even stronger when operand-1-problems were excluded. In two additional analyses, we showed that ERS/ERD can differentiate between self-reported problem-solving strategies (retrieval vs. procedure) and between very small <i>n</i> × 1 and <i>n</i> + 1 problems, demonstrating its high sensitivity to cognitive processes in arithmetic. The present findings support a fact-retrieval account, suggesting that both very small additions and multiplications are solved through fact retrieval. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>\",\"PeriodicalId\":504300,\"journal\":{\"name\":\"Journal of Experimental Psychology: Learning, Memory, and Cognition\",\"volume\":\" \",\"pages\":\"199-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Psychology: Learning, Memory, and Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/xlm0000982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Psychology: Learning, Memory, and Cognition","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/xlm0000982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

人们普遍认为,成年人解决个位数乘法问题几乎完全依靠从记忆中提取事实。相比之下,关于解决个位数加法问题所涉及的认知过程一直存在争议。这场辩论围绕两种理论展开。事实检索帐户的支持者认为,这些问题也可以通过事实检索来解决,而压缩计数帐户的支持者则认为,解决非常小的加法(操作数在1到4之间)涉及高度自动化和无意识的压缩计数。在目前的脑电图(EEG)研究中,我们通过比较求解非常小的加法和乘法的神经生理学相关性来检验这两种说法。40个成年人在做一项算术生产任务,涉及所有(非)个位数的加法和乘法。之后,参与者完成了逐项策略自我报告。在我们的脑电图分析中,我们专注于三个频段(θ、下α、上α)的诱导活动(事件相关同步/去同步,ERS/ERD)。在所有频带中,我们发现在解决非常小的加法和乘法问题时,相似而不是不同的神经生理过程具有更高的证据强度。在alpha波段,当排除操作数1问题时,相似性的证据甚至更强。在另外两个分析中,我们发现ERS/ERD可以区分自我报告的问题解决策略(检索与程序),以及非常小的n × 1和n + 1问题,表明其对算术认知过程的高度敏感性。目前的研究结果支持事实检索帐户,表明非常小的加法和乘法都是通过事实检索解决的。(PsycInfo Database Record (c) 2022 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fact retrieval or compacted counting in arithmetic-A neurophysiological investigation of two hypotheses.

There is broad consensus on the assumption that adults solve single-digit multiplication problems almost exclusively by fact retrieval from memory. In contrast, there has been a long-standing debate on the cognitive processes involved in solving single-digit addition problems. This debate has evolved around two theoretical accounts. Proponents of a fact-retrieval account postulate that these are also solved through fact retrieval, whereas proponents of a compacted-counting account propose that solving very small additions (with operands between 1 and 4) involves highly automatized and unconscious compacted counting. In the present electroencephalography (EEG) study, we put these two accounts to the test by comparing neurophysiological correlates of solving very small additions and multiplications. Forty adults worked on an arithmetic production task involving all (nontie) single-digit additions and multiplications. Afterward, participants completed trial-by-trial strategy self-reports. In our EEG analyses, we focused on induced activity (event-related synchronization/desynchronization, ERS/ERD) in three frequency bands (theta, lower alpha, upper alpha). Across all frequency bands, we found higher evidential strength for similar rather than different neurophysiological processes accompanying the solution of very small addition and multiplication problems. In the alpha bands, evidence for similarity was even stronger when operand-1-problems were excluded. In two additional analyses, we showed that ERS/ERD can differentiate between self-reported problem-solving strategies (retrieval vs. procedure) and between very small n × 1 and n + 1 problems, demonstrating its high sensitivity to cognitive processes in arithmetic. The present findings support a fact-retrieval account, suggesting that both very small additions and multiplications are solved through fact retrieval. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信