Xochitl Hernandez, Loys Bodin, Didier Chesneau, Daniel Guillaume, Daniel Allain, Philippe Chemineau, Benoît Malpaux, Martine Migaud
{"title":"法兰西岛母羊MT1褪黑激素受体基因多态性与季节生理反应的关系","authors":"Xochitl Hernandez, Loys Bodin, Didier Chesneau, Daniel Guillaume, Daniel Allain, Philippe Chemineau, Benoît Malpaux, Martine Migaud","doi":"10.1051/rnd:2005012","DOIUrl":null,"url":null,"abstract":"<p><p>The gene encoding the MT1 melatonin receptor in sheep has a restriction fragment length polymorphism (RFLP) site to the MnlI enzyme whose incidence is associated to the expression of seasonality in several breeds. The aim of this study was to examine the relationship between this genetic marker and the physiological effects of MT1 receptor gene polymorphism on several seasonal functions in Ile-de-France ewes. The study was performed using 12 pairs of half-sib adult Ile-de-France ewes. Within each pair, ewes were selected on the basis of their genotype at the MnlI RFLP site: group +/+ and -/- (presence and absence of MnlI restriction site, respectively). No difference in the dates of the beginning, the end or the length of the breeding season was observed between groups during the two-year study. The seasonal changes in prolactin secretion were not different between groups. Similarly, wool growth rate and primary follicle activity, measured for one year, varied with the time of the year in the same way in the two groups. Our study therefore failed to show any relationship between MT1 polymorphism and reproductive seasonality in Ile-de-France ewes. This suggests that the influence of this polymorphism on the regulation of seasonal function is dependent upon the breed and/or environmental conditions. The MT1 polymorphism can explain only a small part of the genetic variability of seasonal functions and the implication of other genes must be investigated.</p>","PeriodicalId":21133,"journal":{"name":"Reproduction, nutrition, development","volume":"45 2","pages":"151-62"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/rnd:2005012","citationCount":"52","resultStr":"{\"title\":\"Relationship between MT1 melatonin receptor gene polymorphism and seasonal physiological responses in Ile-de-France ewes.\",\"authors\":\"Xochitl Hernandez, Loys Bodin, Didier Chesneau, Daniel Guillaume, Daniel Allain, Philippe Chemineau, Benoît Malpaux, Martine Migaud\",\"doi\":\"10.1051/rnd:2005012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gene encoding the MT1 melatonin receptor in sheep has a restriction fragment length polymorphism (RFLP) site to the MnlI enzyme whose incidence is associated to the expression of seasonality in several breeds. The aim of this study was to examine the relationship between this genetic marker and the physiological effects of MT1 receptor gene polymorphism on several seasonal functions in Ile-de-France ewes. The study was performed using 12 pairs of half-sib adult Ile-de-France ewes. Within each pair, ewes were selected on the basis of their genotype at the MnlI RFLP site: group +/+ and -/- (presence and absence of MnlI restriction site, respectively). No difference in the dates of the beginning, the end or the length of the breeding season was observed between groups during the two-year study. The seasonal changes in prolactin secretion were not different between groups. Similarly, wool growth rate and primary follicle activity, measured for one year, varied with the time of the year in the same way in the two groups. Our study therefore failed to show any relationship between MT1 polymorphism and reproductive seasonality in Ile-de-France ewes. This suggests that the influence of this polymorphism on the regulation of seasonal function is dependent upon the breed and/or environmental conditions. The MT1 polymorphism can explain only a small part of the genetic variability of seasonal functions and the implication of other genes must be investigated.</p>\",\"PeriodicalId\":21133,\"journal\":{\"name\":\"Reproduction, nutrition, development\",\"volume\":\"45 2\",\"pages\":\"151-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/rnd:2005012\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction, nutrition, development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/rnd:2005012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction, nutrition, development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/rnd:2005012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relationship between MT1 melatonin receptor gene polymorphism and seasonal physiological responses in Ile-de-France ewes.
The gene encoding the MT1 melatonin receptor in sheep has a restriction fragment length polymorphism (RFLP) site to the MnlI enzyme whose incidence is associated to the expression of seasonality in several breeds. The aim of this study was to examine the relationship between this genetic marker and the physiological effects of MT1 receptor gene polymorphism on several seasonal functions in Ile-de-France ewes. The study was performed using 12 pairs of half-sib adult Ile-de-France ewes. Within each pair, ewes were selected on the basis of their genotype at the MnlI RFLP site: group +/+ and -/- (presence and absence of MnlI restriction site, respectively). No difference in the dates of the beginning, the end or the length of the breeding season was observed between groups during the two-year study. The seasonal changes in prolactin secretion were not different between groups. Similarly, wool growth rate and primary follicle activity, measured for one year, varied with the time of the year in the same way in the two groups. Our study therefore failed to show any relationship between MT1 polymorphism and reproductive seasonality in Ile-de-France ewes. This suggests that the influence of this polymorphism on the regulation of seasonal function is dependent upon the breed and/or environmental conditions. The MT1 polymorphism can explain only a small part of the genetic variability of seasonal functions and the implication of other genes must be investigated.