全皮质脑磁图传感器的连续头部定位和数据校正。

H S Wilson
{"title":"全皮质脑磁图传感器的连续头部定位和数据校正。","authors":"H S Wilson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous monitoring of the position of a subject's head is an essential part of improving localization accuracy and resolution in MEG. We describe a procedure that has been developed for whole-cortex MEG sensors. The system uses three (or more) small head coils driven continuously by low-amplitude sinusoidal currents with frequencies chosen so they do not interfere with MEG measurements and with each other and are easily separated from power-line signals and harmonics. Analysis of the response of the MEG sensors to the head coils allows continuous monitoring of the position (update times as short as T=2/fpower) using a 3-parameter minimization. The best-fit positions of the head coils are then combined to determine the head translation and rotation. Analysis of phantom data recorded with a 275-channel CTF MEG system in a shielded room shows that coil positions can be determined with an accuracy of approximately 2 mm with an update period T=1/15 s even when the head coils are moving approximately 25 mm at speeds up to 40 mm/s. Data are corrected by expressing the scalar potential for the magnetic field as a spherical-harmonic series, and then determining the effect of rotations and translations on the terms of the series. Since the MEG helmet covers only approximately 60% of the full sphere, care must be taken in determining the coefficients of the spherical-harmonic series to ensure that the modeled magnetic field does not become unrealistically large in the region where there are no MEG sensors (i.e. in the lower 40% of the sphere). Our approach has been to use a minimum-field-energy criterion that minimizes the squared gradient averaged over 4pi sr and radii from 96 to 145 mm while matching the MEG measurements.</p>","PeriodicalId":83814,"journal":{"name":"Neurology & clinical neurophysiology : NCN","volume":"2004 ","pages":"56"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous head-localization and data correction in a whole-cortex MEG sensor.\",\"authors\":\"H S Wilson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuous monitoring of the position of a subject's head is an essential part of improving localization accuracy and resolution in MEG. We describe a procedure that has been developed for whole-cortex MEG sensors. The system uses three (or more) small head coils driven continuously by low-amplitude sinusoidal currents with frequencies chosen so they do not interfere with MEG measurements and with each other and are easily separated from power-line signals and harmonics. Analysis of the response of the MEG sensors to the head coils allows continuous monitoring of the position (update times as short as T=2/fpower) using a 3-parameter minimization. The best-fit positions of the head coils are then combined to determine the head translation and rotation. Analysis of phantom data recorded with a 275-channel CTF MEG system in a shielded room shows that coil positions can be determined with an accuracy of approximately 2 mm with an update period T=1/15 s even when the head coils are moving approximately 25 mm at speeds up to 40 mm/s. Data are corrected by expressing the scalar potential for the magnetic field as a spherical-harmonic series, and then determining the effect of rotations and translations on the terms of the series. Since the MEG helmet covers only approximately 60% of the full sphere, care must be taken in determining the coefficients of the spherical-harmonic series to ensure that the modeled magnetic field does not become unrealistically large in the region where there are no MEG sensors (i.e. in the lower 40% of the sphere). Our approach has been to use a minimum-field-energy criterion that minimizes the squared gradient averaged over 4pi sr and radii from 96 to 145 mm while matching the MEG measurements.</p>\",\"PeriodicalId\":83814,\"journal\":{\"name\":\"Neurology & clinical neurophysiology : NCN\",\"volume\":\"2004 \",\"pages\":\"56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology & clinical neurophysiology : NCN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology & clinical neurophysiology : NCN","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

持续监测被试头部的位置是提高脑磁图定位精度和分辨率的重要组成部分。我们描述了一个程序,已开发的全皮质脑磁图传感器。该系统使用三个(或更多)小头线圈,由低幅度正弦电流连续驱动,选择频率,这样它们就不会干扰MEG测量,也不会相互干扰,并且很容易与电力线信号和谐波分离。MEG传感器对头部线圈的响应分析允许使用3参数最小化连续监测位置(更新时间短至T=2/fpower)。然后组合头线圈的最佳匹配位置以确定头的平移和旋转。对屏蔽房间中275通道CTF MEG系统记录的幽灵数据的分析表明,即使头部线圈以高达40毫米/秒的速度移动约25毫米,也可以以大约2毫米的精度确定线圈位置,更新周期为T=1/15秒。通过将磁场的标量势表示为球调和级数来校正数据,然后确定旋转和平移对该级数的影响。由于MEG头盔只覆盖了整个球体的大约60%,因此在确定球体-谐波级数的系数时必须小心,以确保在没有MEG传感器的区域(即球体的较低40%),模拟的磁场不会变得不切实际地大。我们的方法是使用最小场能量标准,在匹配MEG测量值的同时,将平均梯度的平方最小化为4pi sr,半径从96到145 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous head-localization and data correction in a whole-cortex MEG sensor.

Continuous monitoring of the position of a subject's head is an essential part of improving localization accuracy and resolution in MEG. We describe a procedure that has been developed for whole-cortex MEG sensors. The system uses three (or more) small head coils driven continuously by low-amplitude sinusoidal currents with frequencies chosen so they do not interfere with MEG measurements and with each other and are easily separated from power-line signals and harmonics. Analysis of the response of the MEG sensors to the head coils allows continuous monitoring of the position (update times as short as T=2/fpower) using a 3-parameter minimization. The best-fit positions of the head coils are then combined to determine the head translation and rotation. Analysis of phantom data recorded with a 275-channel CTF MEG system in a shielded room shows that coil positions can be determined with an accuracy of approximately 2 mm with an update period T=1/15 s even when the head coils are moving approximately 25 mm at speeds up to 40 mm/s. Data are corrected by expressing the scalar potential for the magnetic field as a spherical-harmonic series, and then determining the effect of rotations and translations on the terms of the series. Since the MEG helmet covers only approximately 60% of the full sphere, care must be taken in determining the coefficients of the spherical-harmonic series to ensure that the modeled magnetic field does not become unrealistically large in the region where there are no MEG sensors (i.e. in the lower 40% of the sphere). Our approach has been to use a minimum-field-energy criterion that minimizes the squared gradient averaged over 4pi sr and radii from 96 to 145 mm while matching the MEG measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信