脑磁图/脑电组合的区域分辨能力。

M E Pflieger, R E Greenblatt, J Kirkish
{"title":"脑磁图/脑电组合的区域分辨能力。","authors":"M E Pflieger,&nbsp;R E Greenblatt,&nbsp;J Kirkish","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Different modeling frameworks (such as error analyses for dipole localization [Fuchs, 1998] [Huizenga, 2001]; crosstalk and point spread analyses for linear estimators [Liu, 2002]; etc.) have demonstrated improved three-dimensional (3D) resolution for combined MEG/EEG (or EMEG) source estimation. Complementary to these, an empirical analysis of 2D surface data suggested that MEG and EEG information content could be superadditive [Pflieger, 2000]. Taking a hybrid approach in the present study, we made simulations within a regional activity estimation (REGAE, [Pflieger, 2001]) framework, which quantifies the ability of EMEG to discriminate brain activity originating within a 3D region of interest (ROI) from simultaneous non-ROI activity. Two metrics were employed: Kullback-Leibler divergence (KLD) and area under the receiver operator characteristic curve (AUROC). High-density sensor configurations (248 magnetometers, 256 electrodes) were combined with a gray matter source space model (7931 dipole triples, maximum entropy activities), assuming magnetic 3-shell sphere and electric BEM head models. Superadditive KLD was observed frequently across 89 representative brain ROIs and 3 ROI sizes (5, 10, and 15 mm radii), especially for regions already fairly visible to each modality. We also report an observed functional relationship between AUROC and KLD.</p>","PeriodicalId":83814,"journal":{"name":"Neurology & clinical neurophysiology : NCN","volume":"2004 ","pages":"79"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional resolving power of combined MEG/EEG.\",\"authors\":\"M E Pflieger,&nbsp;R E Greenblatt,&nbsp;J Kirkish\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Different modeling frameworks (such as error analyses for dipole localization [Fuchs, 1998] [Huizenga, 2001]; crosstalk and point spread analyses for linear estimators [Liu, 2002]; etc.) have demonstrated improved three-dimensional (3D) resolution for combined MEG/EEG (or EMEG) source estimation. Complementary to these, an empirical analysis of 2D surface data suggested that MEG and EEG information content could be superadditive [Pflieger, 2000]. Taking a hybrid approach in the present study, we made simulations within a regional activity estimation (REGAE, [Pflieger, 2001]) framework, which quantifies the ability of EMEG to discriminate brain activity originating within a 3D region of interest (ROI) from simultaneous non-ROI activity. Two metrics were employed: Kullback-Leibler divergence (KLD) and area under the receiver operator characteristic curve (AUROC). High-density sensor configurations (248 magnetometers, 256 electrodes) were combined with a gray matter source space model (7931 dipole triples, maximum entropy activities), assuming magnetic 3-shell sphere and electric BEM head models. Superadditive KLD was observed frequently across 89 representative brain ROIs and 3 ROI sizes (5, 10, and 15 mm radii), especially for regions already fairly visible to each modality. We also report an observed functional relationship between AUROC and KLD.</p>\",\"PeriodicalId\":83814,\"journal\":{\"name\":\"Neurology & clinical neurophysiology : NCN\",\"volume\":\"2004 \",\"pages\":\"79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology & clinical neurophysiology : NCN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology & clinical neurophysiology : NCN","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不同的建模框架(如偶极子定位的误差分析[Fuchs, 1998] [Huizenga, 2001];线性估计的串扰和点扩展分析[Liu, 2002];等)已经证明了提高的三维(3D)分辨率,用于联合MEG/EEG(或EMEG)源估计。与此相辅相成的是,对二维表面数据的实证分析表明,MEG和EEG的信息内容可能是超相加的[Pflieger, 2000]。在本研究中,我们采用混合方法,在区域活动估计(REGAE, [plflieger, 2001])框架内进行了模拟,该框架量化了EMEG区分3D感兴趣区域(ROI)内产生的大脑活动与同时发生的非ROI活动的能力。采用两个指标:Kullback-Leibler散度(KLD)和接收算子特征曲线下面积(AUROC)。高密度传感器配置(248个磁力计,256个电极)与灰质源空间模型(7931个偶极子三重体,最大熵活动)相结合,假设磁三壳球和电BEM头模型。在89个具有代表性的大脑ROI和3种ROI尺寸(5,10和15mm半径)中经常观察到超加性KLD,特别是对于每种模式已经相当可见的区域。我们也报道了AUROC和KLD之间的函数关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regional resolving power of combined MEG/EEG.

Different modeling frameworks (such as error analyses for dipole localization [Fuchs, 1998] [Huizenga, 2001]; crosstalk and point spread analyses for linear estimators [Liu, 2002]; etc.) have demonstrated improved three-dimensional (3D) resolution for combined MEG/EEG (or EMEG) source estimation. Complementary to these, an empirical analysis of 2D surface data suggested that MEG and EEG information content could be superadditive [Pflieger, 2000]. Taking a hybrid approach in the present study, we made simulations within a regional activity estimation (REGAE, [Pflieger, 2001]) framework, which quantifies the ability of EMEG to discriminate brain activity originating within a 3D region of interest (ROI) from simultaneous non-ROI activity. Two metrics were employed: Kullback-Leibler divergence (KLD) and area under the receiver operator characteristic curve (AUROC). High-density sensor configurations (248 magnetometers, 256 electrodes) were combined with a gray matter source space model (7931 dipole triples, maximum entropy activities), assuming magnetic 3-shell sphere and electric BEM head models. Superadditive KLD was observed frequently across 89 representative brain ROIs and 3 ROI sizes (5, 10, and 15 mm radii), especially for regions already fairly visible to each modality. We also report an observed functional relationship between AUROC and KLD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信