{"title":"人水肿性大脑皮层的神经细胞核和核仁异常。使用皮层活组织检查的电子显微镜研究。","authors":"O J Castejón, G J Arismendi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral cortical biopsies of 17 patients with clinical diagnosis of congenital hydrocephalus, complicated brain trauma, cerebellar syndrome and vascular anomaly were examined with the transmission electron microscope to study the nuclear and nucleolar abnormalities induced by moderate and severe brain oedema, and the associated anoxic-ischemic conditions of brain tissue. In infant patients with congenital hydrocephalus and Arnold-Chiari malformation two different structural patterns of immature chromatin organization were found: the clear type characterized by a clear granular and fibrillar structure of euchromatin, scarce heterochromatin masses and few perichromatin granules, and a dense granular and fibrillar euchromatin with abundant and scattered heterochromatin masses, and increased number of perichromatin granules. The lobulated nuclei exhibited an irregularly dilated and fragmented perinuclear cistern, and areas of apparently intact nuclear pore complexes alternating with regions of nuclear pore complex disassembly. In moderate traumatic brain injuries some nucleoli exhibit apparent intact nucleolar substructures, and in severe brain oedema some nucleoli appeared shrunken and irregularly outlined with one or two fibrillar centers, and others were disintegrated. The nuclear and nucleolar morphological alterations are discussed in relation with oxidative stress, peroxidative damage, hemoglobin-induced cytotoxicity, calcium overload, glutamate excitotoxicity, and caspase activation.</p>","PeriodicalId":17136,"journal":{"name":"Journal of submicroscopic cytology and pathology","volume":"36 3-4","pages":"273-83"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nerve cell nuclear and nucleolar abnormalities in the human oedematous cerebral cortex. An electron microscopic study using cortical biopsies.\",\"authors\":\"O J Castejón, G J Arismendi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebral cortical biopsies of 17 patients with clinical diagnosis of congenital hydrocephalus, complicated brain trauma, cerebellar syndrome and vascular anomaly were examined with the transmission electron microscope to study the nuclear and nucleolar abnormalities induced by moderate and severe brain oedema, and the associated anoxic-ischemic conditions of brain tissue. In infant patients with congenital hydrocephalus and Arnold-Chiari malformation two different structural patterns of immature chromatin organization were found: the clear type characterized by a clear granular and fibrillar structure of euchromatin, scarce heterochromatin masses and few perichromatin granules, and a dense granular and fibrillar euchromatin with abundant and scattered heterochromatin masses, and increased number of perichromatin granules. The lobulated nuclei exhibited an irregularly dilated and fragmented perinuclear cistern, and areas of apparently intact nuclear pore complexes alternating with regions of nuclear pore complex disassembly. In moderate traumatic brain injuries some nucleoli exhibit apparent intact nucleolar substructures, and in severe brain oedema some nucleoli appeared shrunken and irregularly outlined with one or two fibrillar centers, and others were disintegrated. The nuclear and nucleolar morphological alterations are discussed in relation with oxidative stress, peroxidative damage, hemoglobin-induced cytotoxicity, calcium overload, glutamate excitotoxicity, and caspase activation.</p>\",\"PeriodicalId\":17136,\"journal\":{\"name\":\"Journal of submicroscopic cytology and pathology\",\"volume\":\"36 3-4\",\"pages\":\"273-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of submicroscopic cytology and pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of submicroscopic cytology and pathology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nerve cell nuclear and nucleolar abnormalities in the human oedematous cerebral cortex. An electron microscopic study using cortical biopsies.
Cerebral cortical biopsies of 17 patients with clinical diagnosis of congenital hydrocephalus, complicated brain trauma, cerebellar syndrome and vascular anomaly were examined with the transmission electron microscope to study the nuclear and nucleolar abnormalities induced by moderate and severe brain oedema, and the associated anoxic-ischemic conditions of brain tissue. In infant patients with congenital hydrocephalus and Arnold-Chiari malformation two different structural patterns of immature chromatin organization were found: the clear type characterized by a clear granular and fibrillar structure of euchromatin, scarce heterochromatin masses and few perichromatin granules, and a dense granular and fibrillar euchromatin with abundant and scattered heterochromatin masses, and increased number of perichromatin granules. The lobulated nuclei exhibited an irregularly dilated and fragmented perinuclear cistern, and areas of apparently intact nuclear pore complexes alternating with regions of nuclear pore complex disassembly. In moderate traumatic brain injuries some nucleoli exhibit apparent intact nucleolar substructures, and in severe brain oedema some nucleoli appeared shrunken and irregularly outlined with one or two fibrillar centers, and others were disintegrated. The nuclear and nucleolar morphological alterations are discussed in relation with oxidative stress, peroxidative damage, hemoglobin-induced cytotoxicity, calcium overload, glutamate excitotoxicity, and caspase activation.