微阵列数据分析:处理异方差的分层t检验。

Applied bioinformatics Pub Date : 2004-01-01
Renée X de Menezes, Judith M Boer, Hans C van Houwelingen
{"title":"微阵列数据分析:处理异方差的分层t检验。","authors":"Renée X de Menezes,&nbsp;Judith M Boer,&nbsp;Hans C van Houwelingen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of differential gene expression in microarray experiments requires the development of adequate statistical tools. This article describes a simple statistical method for detecting differential expression between two conditions with a low number of replicates. When comparing two group means using a traditional t-test, gene-specific variance estimates are unstable and can lead to wrong conclusions. We construct a likelihood ratio test while modelling these variances hierarchically across all genes, and express it as a t-test statistic. By borrowing information across genes we can take advantage of their large numbers, and still yield a gene-specific test statistic. We show that this hierarchical t-test is more powerful than its traditional version and generates less false positives in a simulation study, especially with small sample sizes. This approach can be extended to cases where there are more than two groups.</p>","PeriodicalId":87049,"journal":{"name":"Applied bioinformatics","volume":"3 4","pages":"229-35"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microarray data analysis: a hierarchical T-test to handle heteroscedasticity.\",\"authors\":\"Renée X de Menezes,&nbsp;Judith M Boer,&nbsp;Hans C van Houwelingen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The analysis of differential gene expression in microarray experiments requires the development of adequate statistical tools. This article describes a simple statistical method for detecting differential expression between two conditions with a low number of replicates. When comparing two group means using a traditional t-test, gene-specific variance estimates are unstable and can lead to wrong conclusions. We construct a likelihood ratio test while modelling these variances hierarchically across all genes, and express it as a t-test statistic. By borrowing information across genes we can take advantage of their large numbers, and still yield a gene-specific test statistic. We show that this hierarchical t-test is more powerful than its traditional version and generates less false positives in a simulation study, especially with small sample sizes. This approach can be extended to cases where there are more than two groups.</p>\",\"PeriodicalId\":87049,\"journal\":{\"name\":\"Applied bioinformatics\",\"volume\":\"3 4\",\"pages\":\"229-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied bioinformatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微阵列实验中差异基因表达的分析需要开发足够的统计工具。本文描述了一种简单的统计方法,用于检测两种低重复数条件下的差异表达。当使用传统的t检验比较两组均值时,基因特异性方差估计是不稳定的,可能导致错误的结论。我们构建了一个似然比检验,同时对所有基因的这些差异进行分层建模,并将其表示为t检验统计量。通过借用基因间的信息,我们可以利用它们的大量数量,并仍然产生基因特异性测试统计。我们表明,这种分层t检验比传统版本更强大,在模拟研究中产生的误报更少,特别是在小样本量的情况下。这种方法可以扩展到有两个以上组的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microarray data analysis: a hierarchical T-test to handle heteroscedasticity.

The analysis of differential gene expression in microarray experiments requires the development of adequate statistical tools. This article describes a simple statistical method for detecting differential expression between two conditions with a low number of replicates. When comparing two group means using a traditional t-test, gene-specific variance estimates are unstable and can lead to wrong conclusions. We construct a likelihood ratio test while modelling these variances hierarchically across all genes, and express it as a t-test statistic. By borrowing information across genes we can take advantage of their large numbers, and still yield a gene-specific test statistic. We show that this hierarchical t-test is more powerful than its traditional version and generates less false positives in a simulation study, especially with small sample sizes. This approach can be extended to cases where there are more than two groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信