基于在线模型的诊断,支持先进生命维持系统的自主运行。

Gautam Biswas, Eric-Jan Manders, John Ramirez, Nagabhusan Mahadevan, Sherif Abdelwahed
{"title":"基于在线模型的诊断,支持先进生命维持系统的自主运行。","authors":"Gautam Biswas,&nbsp;Eric-Jan Manders,&nbsp;John Ramirez,&nbsp;Nagabhusan Mahadevan,&nbsp;Sherif Abdelwahed","doi":"10.3727/154296604774808892","DOIUrl":null,"url":null,"abstract":"<p><p>This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.</p>","PeriodicalId":86963,"journal":{"name":"Habitation (Elmsford, N.Y.)","volume":"10 1","pages":"21-37"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/154296604774808892","citationCount":"27","resultStr":"{\"title\":\"Online model-based diagnosis to support autonomous operation of an advanced life support system.\",\"authors\":\"Gautam Biswas,&nbsp;Eric-Jan Manders,&nbsp;John Ramirez,&nbsp;Nagabhusan Mahadevan,&nbsp;Sherif Abdelwahed\",\"doi\":\"10.3727/154296604774808892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.</p>\",\"PeriodicalId\":86963,\"journal\":{\"name\":\"Habitation (Elmsford, N.Y.)\",\"volume\":\"10 1\",\"pages\":\"21-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3727/154296604774808892\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Habitation (Elmsford, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3727/154296604774808892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Habitation (Elmsford, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/154296604774808892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文介绍了先进生命支持系统(ALS)子系统基于模型的在线诊断方法。诊断方法专门用于快速检测、隔离和识别系统组件中的故障,以便应用故障自适应控制技术来维持系统运行而不中断。我们描述了我们的混合建模方案和诊断方法的组成部分,然后通过建立ALS水回收系统(WRS)的反渗透(RO)系统的详细模型来证明该方法的有效性。该模型用NASA JSC实验试验台收集的真实数据进行了验证。介绍了在模拟故障数据上进行的一系列诊断实验,并对结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online model-based diagnosis to support autonomous operation of an advanced life support system.

This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信