{"title":"他汀类药物对炎症过程的调节。","authors":"Milita Crisby","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Statins reduce cholesterol levels through competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key enzyme that regulates cholesterol synthesis. The cholesterol-lowering effect of statins is also due to an increase in the uptake of cholesterol by cells as a result of intracellular cholesterol depletion and enhanced expression of low-density lipoprotein (LDL) receptors. The use of statins as lipid-lowering agents has lead to remarkable changes in the treatment and prevention of ischemic heart disease. Results of large clinical trials of patients with ischemic heart disease have demonstrated that statins reduce inflammatory markers such as C-reactive protein, an independent risk factor in the disease. Statins exhibit properties that are beyond their lipid-lowering effects. These non-lipid-lowering properties involve the inhibition of the isoprenoid pathway through decreased synthesis of many nonsteroidal isoprenoid compounds. The focus on the immunomodulatory effect of statins is the result of the positive outcome of pravastatin treatment in cardiac transplantation patients, as well as angiographic regression studies showing insignificant changes in the degree of coronary stenosis despite a large reduction in cardiac events. Statin treatment reduces the risk of ischemic stroke despite the fact that LDL cholesterol is not directly associated with the risk of stroke. This observation lead to the investigation of the role of statins in inflammation and the immune system. Recent research data demonstrated that statins inhibit the induction of the major histocompatibility (MHC) class II expression by interferon-gamma (IFN-gamma), leading to repression of MHC II-mediated T-cell activation. Furthermore, statins inhibit the expression of specific cell surface receptors on monocytes, adhesion molecules and also integrin-dependent leucocyte adhesion. While statins may stimulate the secretion of caspase-1, IL-1beta and IL-18 in peripheral mononuclear cells in response to Mycobacterium tuberculosis, they exhibit additional effects on inflammation by decreasing IL-6 synthesis in human vascular smooth muscle cells (VSMC) in vitro. The focus of this monograph is to highlight the role of statins in the modulation of the immune system and inflammatory processes.</p>","PeriodicalId":87159,"journal":{"name":"Timely topics in medicine. Cardiovascular diseases","volume":"9 ","pages":"E3"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of the inflammatory process by statins.\",\"authors\":\"Milita Crisby\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Statins reduce cholesterol levels through competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key enzyme that regulates cholesterol synthesis. The cholesterol-lowering effect of statins is also due to an increase in the uptake of cholesterol by cells as a result of intracellular cholesterol depletion and enhanced expression of low-density lipoprotein (LDL) receptors. The use of statins as lipid-lowering agents has lead to remarkable changes in the treatment and prevention of ischemic heart disease. Results of large clinical trials of patients with ischemic heart disease have demonstrated that statins reduce inflammatory markers such as C-reactive protein, an independent risk factor in the disease. Statins exhibit properties that are beyond their lipid-lowering effects. These non-lipid-lowering properties involve the inhibition of the isoprenoid pathway through decreased synthesis of many nonsteroidal isoprenoid compounds. The focus on the immunomodulatory effect of statins is the result of the positive outcome of pravastatin treatment in cardiac transplantation patients, as well as angiographic regression studies showing insignificant changes in the degree of coronary stenosis despite a large reduction in cardiac events. Statin treatment reduces the risk of ischemic stroke despite the fact that LDL cholesterol is not directly associated with the risk of stroke. This observation lead to the investigation of the role of statins in inflammation and the immune system. Recent research data demonstrated that statins inhibit the induction of the major histocompatibility (MHC) class II expression by interferon-gamma (IFN-gamma), leading to repression of MHC II-mediated T-cell activation. Furthermore, statins inhibit the expression of specific cell surface receptors on monocytes, adhesion molecules and also integrin-dependent leucocyte adhesion. While statins may stimulate the secretion of caspase-1, IL-1beta and IL-18 in peripheral mononuclear cells in response to Mycobacterium tuberculosis, they exhibit additional effects on inflammation by decreasing IL-6 synthesis in human vascular smooth muscle cells (VSMC) in vitro. The focus of this monograph is to highlight the role of statins in the modulation of the immune system and inflammatory processes.</p>\",\"PeriodicalId\":87159,\"journal\":{\"name\":\"Timely topics in medicine. Cardiovascular diseases\",\"volume\":\"9 \",\"pages\":\"E3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Timely topics in medicine. Cardiovascular diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Timely topics in medicine. Cardiovascular diseases","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulation of the inflammatory process by statins.
Statins reduce cholesterol levels through competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key enzyme that regulates cholesterol synthesis. The cholesterol-lowering effect of statins is also due to an increase in the uptake of cholesterol by cells as a result of intracellular cholesterol depletion and enhanced expression of low-density lipoprotein (LDL) receptors. The use of statins as lipid-lowering agents has lead to remarkable changes in the treatment and prevention of ischemic heart disease. Results of large clinical trials of patients with ischemic heart disease have demonstrated that statins reduce inflammatory markers such as C-reactive protein, an independent risk factor in the disease. Statins exhibit properties that are beyond their lipid-lowering effects. These non-lipid-lowering properties involve the inhibition of the isoprenoid pathway through decreased synthesis of many nonsteroidal isoprenoid compounds. The focus on the immunomodulatory effect of statins is the result of the positive outcome of pravastatin treatment in cardiac transplantation patients, as well as angiographic regression studies showing insignificant changes in the degree of coronary stenosis despite a large reduction in cardiac events. Statin treatment reduces the risk of ischemic stroke despite the fact that LDL cholesterol is not directly associated with the risk of stroke. This observation lead to the investigation of the role of statins in inflammation and the immune system. Recent research data demonstrated that statins inhibit the induction of the major histocompatibility (MHC) class II expression by interferon-gamma (IFN-gamma), leading to repression of MHC II-mediated T-cell activation. Furthermore, statins inhibit the expression of specific cell surface receptors on monocytes, adhesion molecules and also integrin-dependent leucocyte adhesion. While statins may stimulate the secretion of caspase-1, IL-1beta and IL-18 in peripheral mononuclear cells in response to Mycobacterium tuberculosis, they exhibit additional effects on inflammation by decreasing IL-6 synthesis in human vascular smooth muscle cells (VSMC) in vitro. The focus of this monograph is to highlight the role of statins in the modulation of the immune system and inflammatory processes.