Vanessa Nicolin, Cristina Ponti, Paola Narducci, Vittorio Grill, Roberta Bortul, Marina Zweyer, Mauro Vaccarezza, Giorgio Zauli
{"title":"不同水平的神经元一氧化氮合酶异构体调节TIB-71和CRL-2278 RAW 264.7小鼠细胞克隆的破骨分化率。","authors":"Vanessa Nicolin, Cristina Ponti, Paola Narducci, Vittorio Grill, Roberta Bortul, Marina Zweyer, Mauro Vaccarezza, Giorgio Zauli","doi":"10.1002/ar.a.20239","DOIUrl":null,"url":null,"abstract":"<p><p>It has been clearly established that osteoclasts, which play a crucial role in bone resorption, differentiate from hematopoietic cells belonging to the monocyte/macrophage lineage in the presence of macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL). We have here investigated the M-CSF- and RANKL-induced osteoclastic differentiation of two distinct clones of the murine monocytic/macrophagic RAW 264.7 cell line, known as TIB-71 and CRL-2278, the latter cell clone being defective for the expression of the inducible nitric oxide synthase isoform in response to interferon-gamma or lipopolysaccharide. CRL-2278 cells demonstrated a more rapid osteoclastic differentiation than TIB-71 cells, as documented by morphology, tartrate-resistant acid phosphatase positivity, and bone resorption activity. The enhanced osteoclastic differentiation of CRL-2278 was accompanied by a higher rate of cells in the S/G2-M phases of cell cycle as compared to TIB-71. The analysis of nitric oxide synthase (NOS) isoforms clearly demonstrated that only neuronal NOS was detectable at high levels in CRL-2278 but not in TIB cells under all tested conditions. Moreover, the broad inhibitor of NOS activity L-NAME significantly inhibited osteoclastic differentiation of CRL-2278 cells. Altogether, these results demonstrate that a basal constitutive neuronal NOS activity positively affects the RANKL/M-CSF-related osteoclastic differentiation.</p>","PeriodicalId":85633,"journal":{"name":"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology","volume":"286 2","pages":"945-54"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ar.a.20239","citationCount":"12","resultStr":"{\"title\":\"Different levels of the neuronal nitric oxide synthase isoform modulate the rate of osteoclastic differentiation of TIB-71 and CRL-2278 RAW 264.7 murine cell clones.\",\"authors\":\"Vanessa Nicolin, Cristina Ponti, Paola Narducci, Vittorio Grill, Roberta Bortul, Marina Zweyer, Mauro Vaccarezza, Giorgio Zauli\",\"doi\":\"10.1002/ar.a.20239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been clearly established that osteoclasts, which play a crucial role in bone resorption, differentiate from hematopoietic cells belonging to the monocyte/macrophage lineage in the presence of macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL). We have here investigated the M-CSF- and RANKL-induced osteoclastic differentiation of two distinct clones of the murine monocytic/macrophagic RAW 264.7 cell line, known as TIB-71 and CRL-2278, the latter cell clone being defective for the expression of the inducible nitric oxide synthase isoform in response to interferon-gamma or lipopolysaccharide. CRL-2278 cells demonstrated a more rapid osteoclastic differentiation than TIB-71 cells, as documented by morphology, tartrate-resistant acid phosphatase positivity, and bone resorption activity. The enhanced osteoclastic differentiation of CRL-2278 was accompanied by a higher rate of cells in the S/G2-M phases of cell cycle as compared to TIB-71. The analysis of nitric oxide synthase (NOS) isoforms clearly demonstrated that only neuronal NOS was detectable at high levels in CRL-2278 but not in TIB cells under all tested conditions. Moreover, the broad inhibitor of NOS activity L-NAME significantly inhibited osteoclastic differentiation of CRL-2278 cells. Altogether, these results demonstrate that a basal constitutive neuronal NOS activity positively affects the RANKL/M-CSF-related osteoclastic differentiation.</p>\",\"PeriodicalId\":85633,\"journal\":{\"name\":\"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology\",\"volume\":\"286 2\",\"pages\":\"945-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ar.a.20239\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ar.a.20239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.a.20239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
摘要
破骨细胞在骨吸收中起着至关重要的作用,在巨噬细胞集落刺激因子(M-CSF)和nf - κ b配体受体激活剂(RANKL)的存在下,破骨细胞从单核/巨噬细胞谱系的造血细胞分化而来。我们在这里研究了M-CSF和rankl诱导的小鼠单核/巨噬细胞RAW 264.7细胞系两个不同克隆的破骨细胞分化,称为TIB-71和CRL-2278,后者的细胞克隆对干扰素或脂多糖的诱导型一氧化氮合酶异构体的表达有缺陷。CRL-2278细胞表现出比TIB-71细胞更快的破骨细胞分化,这是由形态学、抗酒石酸酸性磷酸酶阳性和骨吸收活性证明的。与TIB-71相比,CRL-2278增强的破骨细胞分化伴随着更高的细胞周期S/G2-M期的细胞率。一氧化氮合酶(NOS)异构体分析清楚地表明,在所有测试条件下,只有神经元NOS在CRL-2278中检测到高水平,而在TIB细胞中检测不到。此外,广泛的NOS活性抑制剂L-NAME显著抑制CRL-2278细胞的破骨细胞分化。综上所述,这些结果表明,基础构成神经元NOS活性积极影响RANKL/ m - csf相关的破骨细胞分化。
Different levels of the neuronal nitric oxide synthase isoform modulate the rate of osteoclastic differentiation of TIB-71 and CRL-2278 RAW 264.7 murine cell clones.
It has been clearly established that osteoclasts, which play a crucial role in bone resorption, differentiate from hematopoietic cells belonging to the monocyte/macrophage lineage in the presence of macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL). We have here investigated the M-CSF- and RANKL-induced osteoclastic differentiation of two distinct clones of the murine monocytic/macrophagic RAW 264.7 cell line, known as TIB-71 and CRL-2278, the latter cell clone being defective for the expression of the inducible nitric oxide synthase isoform in response to interferon-gamma or lipopolysaccharide. CRL-2278 cells demonstrated a more rapid osteoclastic differentiation than TIB-71 cells, as documented by morphology, tartrate-resistant acid phosphatase positivity, and bone resorption activity. The enhanced osteoclastic differentiation of CRL-2278 was accompanied by a higher rate of cells in the S/G2-M phases of cell cycle as compared to TIB-71. The analysis of nitric oxide synthase (NOS) isoforms clearly demonstrated that only neuronal NOS was detectable at high levels in CRL-2278 but not in TIB cells under all tested conditions. Moreover, the broad inhibitor of NOS activity L-NAME significantly inhibited osteoclastic differentiation of CRL-2278 cells. Altogether, these results demonstrate that a basal constitutive neuronal NOS activity positively affects the RANKL/M-CSF-related osteoclastic differentiation.