用估计参数值的马尔可夫决策模型构造序列比对。

Fern Y Hunt, Anthony J Kearsley, Agnes O'Gallagher
{"title":"用估计参数值的马尔可夫决策模型构造序列比对。","authors":"Fern Y Hunt,&nbsp;Anthony J Kearsley,&nbsp;Agnes O'Gallagher","doi":"10.2165/00822942-200403020-00010","DOIUrl":null,"url":null,"abstract":"<p><p>Current methods for aligning biological sequences are based on dynamic programming algorithms. If large numbers of sequences or a number of long sequences are to be aligned, the required computations are expensive in memory and central processing unit (CPU) time. In an attempt to bring the tools of large-scale linear programming (LP) methods to bear on this problem, we formulate the alignment process as a controlled Markov chain and construct a suggested alignment based on policies that minimise the expected total cost of the alignment. We discuss the LP associated with the total expected discounted cost and show the results of a solution of the problem based on a primal-dual interior point method. Model parameters, estimated from aligned sequences, along with cost function parameters are used to construct the objective and constraint conditions of the LP problem. This article concludes with a discussion of some alignments obtained from the LP solutions of problems with various cost function parameter values.</p>","PeriodicalId":87049,"journal":{"name":"Applied bioinformatics","volume":"3 2-3","pages":"159-65"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00822942-200403020-00010","citationCount":"0","resultStr":"{\"title\":\"Constructing sequence alignments from a Markov decision model with estimated parameter values.\",\"authors\":\"Fern Y Hunt,&nbsp;Anthony J Kearsley,&nbsp;Agnes O'Gallagher\",\"doi\":\"10.2165/00822942-200403020-00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current methods for aligning biological sequences are based on dynamic programming algorithms. If large numbers of sequences or a number of long sequences are to be aligned, the required computations are expensive in memory and central processing unit (CPU) time. In an attempt to bring the tools of large-scale linear programming (LP) methods to bear on this problem, we formulate the alignment process as a controlled Markov chain and construct a suggested alignment based on policies that minimise the expected total cost of the alignment. We discuss the LP associated with the total expected discounted cost and show the results of a solution of the problem based on a primal-dual interior point method. Model parameters, estimated from aligned sequences, along with cost function parameters are used to construct the objective and constraint conditions of the LP problem. This article concludes with a discussion of some alignments obtained from the LP solutions of problems with various cost function parameter values.</p>\",\"PeriodicalId\":87049,\"journal\":{\"name\":\"Applied bioinformatics\",\"volume\":\"3 2-3\",\"pages\":\"159-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2165/00822942-200403020-00010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2165/00822942-200403020-00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00822942-200403020-00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的生物序列比对方法是基于动态规划算法的。如果要对齐大量序列或许多长序列,所需的计算在内存和中央处理单元(CPU)时间上是昂贵的。为了尝试使用大规模线性规划(LP)方法的工具来解决这个问题,我们将对齐过程表述为受控的马尔可夫链,并基于最小化对齐预期总成本的策略构建建议对齐。我们讨论了与总期望折现成本相关的LP问题,并给出了基于原始-对偶内点法的求解结果。利用对准序列估计的模型参数和代价函数参数来构造LP问题的目标条件和约束条件。本文最后讨论了从具有不同代价函数参数值的问题的LP解中得到的一些对准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing sequence alignments from a Markov decision model with estimated parameter values.

Current methods for aligning biological sequences are based on dynamic programming algorithms. If large numbers of sequences or a number of long sequences are to be aligned, the required computations are expensive in memory and central processing unit (CPU) time. In an attempt to bring the tools of large-scale linear programming (LP) methods to bear on this problem, we formulate the alignment process as a controlled Markov chain and construct a suggested alignment based on policies that minimise the expected total cost of the alignment. We discuss the LP associated with the total expected discounted cost and show the results of a solution of the problem based on a primal-dual interior point method. Model parameters, estimated from aligned sequences, along with cost function parameters are used to construct the objective and constraint conditions of the LP problem. This article concludes with a discussion of some alignments obtained from the LP solutions of problems with various cost function parameter values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信