通过自组织图识别β -地中海贫血早期检测左心室收缩功能障碍的超声心动图指标:一项数据探索研究。

Spyros Deftereos, Dimitra Georgonikou, Andreas Persidis, Christos Andronis, Athanassios Aessopos
{"title":"通过自组织图识别β -地中海贫血早期检测左心室收缩功能障碍的超声心动图指标:一项数据探索研究。","authors":"Spyros Deftereos,&nbsp;Dimitra Georgonikou,&nbsp;Andreas Persidis,&nbsp;Christos Andronis,&nbsp;Athanassios Aessopos","doi":"10.1080/14639230400026897","DOIUrl":null,"url":null,"abstract":"<p><p>Congestive heart failure (CHF) remains the primary cause of death in patients suffering from beta-thalassaemia major. Its early detection allows the prompt initiation of aggressive chelation therapy, when the condition can still be reversed. We aimed at identifying echocardiographic indices for the early detection of left ventricular (LV) systolic dysfunction, the physiological abnormality underlying CHF, in these patients. We used Self-Organizing Maps (SOMs)--an artificial neural network--for identifying novel correlations within our Electronic Healthcare Record (EHCR) database on beta-thalassaemia. We sought echocardiographic parameters that are correlated to future deterioration of the LV ejection fraction and therefore constitute early signs of LV systolic dysfunction. At the same time, we evaluated SOMs as tools for exploring clinical datasets and make recommendations on the setup of the SOM algorithm that is appropriate for such tasks. We found that high values of the LV end-systolic diameter index and of the E/A ratio are early indications of LV systolic dysfunction. From a technical point of view, zero-mean unit-variance normalization of the input data, a large initial neighbourhood radius and a rectangular SOM grid produced optimal maps for the purpose of detecting clinical correlations. We have successfully used SOMs for exploring a clinical dataset and for creating novel medical hypotheses. A clinical study has been launched to confirm these hypotheses, and initial results are encouraging.</p>","PeriodicalId":80069,"journal":{"name":"Medical informatics and the Internet in medicine","volume":"30 1","pages":"37-53"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14639230400026897","citationCount":"0","resultStr":"{\"title\":\"Identification of echocardiographic indices for the early detection of left-ventricular systolic dysfunction in beta-thalassaemia via Self-Organizing Maps: a data-exploration study.\",\"authors\":\"Spyros Deftereos,&nbsp;Dimitra Georgonikou,&nbsp;Andreas Persidis,&nbsp;Christos Andronis,&nbsp;Athanassios Aessopos\",\"doi\":\"10.1080/14639230400026897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Congestive heart failure (CHF) remains the primary cause of death in patients suffering from beta-thalassaemia major. Its early detection allows the prompt initiation of aggressive chelation therapy, when the condition can still be reversed. We aimed at identifying echocardiographic indices for the early detection of left ventricular (LV) systolic dysfunction, the physiological abnormality underlying CHF, in these patients. We used Self-Organizing Maps (SOMs)--an artificial neural network--for identifying novel correlations within our Electronic Healthcare Record (EHCR) database on beta-thalassaemia. We sought echocardiographic parameters that are correlated to future deterioration of the LV ejection fraction and therefore constitute early signs of LV systolic dysfunction. At the same time, we evaluated SOMs as tools for exploring clinical datasets and make recommendations on the setup of the SOM algorithm that is appropriate for such tasks. We found that high values of the LV end-systolic diameter index and of the E/A ratio are early indications of LV systolic dysfunction. From a technical point of view, zero-mean unit-variance normalization of the input data, a large initial neighbourhood radius and a rectangular SOM grid produced optimal maps for the purpose of detecting clinical correlations. We have successfully used SOMs for exploring a clinical dataset and for creating novel medical hypotheses. A clinical study has been launched to confirm these hypotheses, and initial results are encouraging.</p>\",\"PeriodicalId\":80069,\"journal\":{\"name\":\"Medical informatics and the Internet in medicine\",\"volume\":\"30 1\",\"pages\":\"37-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14639230400026897\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical informatics and the Internet in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14639230400026897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical informatics and the Internet in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14639230400026897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

充血性心力衰竭(CHF)仍然是重度地中海贫血患者死亡的主要原因。在病情仍可逆转的情况下,早期发现可以及时开始积极的螯合治疗。我们的目的是确定超声心动图指标早期检测左心室(LV)收缩功能障碍,生理异常潜在的CHF,在这些患者。我们使用自组织地图(SOMs)——一种人工神经网络——来识别我们的电子医疗记录(EHCR)数据库中β -地中海贫血的新相关性。我们寻找与左室射血分数未来恶化相关的超声心动图参数,从而构成左室收缩功能障碍的早期迹象。同时,我们评估了SOM作为探索临床数据集的工具,并就适合此类任务的SOM算法的设置提出了建议。我们发现,高值的左室收缩末期直径指数和E/A比值是左室收缩功能障碍的早期指征。从技术角度来看,输入数据的零均值单位方差归一化,一个大的初始邻域半径和一个矩形SOM网格产生了用于检测临床相关性的最佳地图。我们已经成功地使用SOMs来探索临床数据集和创建新的医学假设。一项临床研究已经开始证实这些假设,初步结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of echocardiographic indices for the early detection of left-ventricular systolic dysfunction in beta-thalassaemia via Self-Organizing Maps: a data-exploration study.

Congestive heart failure (CHF) remains the primary cause of death in patients suffering from beta-thalassaemia major. Its early detection allows the prompt initiation of aggressive chelation therapy, when the condition can still be reversed. We aimed at identifying echocardiographic indices for the early detection of left ventricular (LV) systolic dysfunction, the physiological abnormality underlying CHF, in these patients. We used Self-Organizing Maps (SOMs)--an artificial neural network--for identifying novel correlations within our Electronic Healthcare Record (EHCR) database on beta-thalassaemia. We sought echocardiographic parameters that are correlated to future deterioration of the LV ejection fraction and therefore constitute early signs of LV systolic dysfunction. At the same time, we evaluated SOMs as tools for exploring clinical datasets and make recommendations on the setup of the SOM algorithm that is appropriate for such tasks. We found that high values of the LV end-systolic diameter index and of the E/A ratio are early indications of LV systolic dysfunction. From a technical point of view, zero-mean unit-variance normalization of the input data, a large initial neighbourhood radius and a rectangular SOM grid produced optimal maps for the purpose of detecting clinical correlations. We have successfully used SOMs for exploring a clinical dataset and for creating novel medical hypotheses. A clinical study has been launched to confirm these hypotheses, and initial results are encouraging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信