A Schnabel, M Burghoff, S Hartwig, F Petsche, U Steinhoff, D Drung, H Koch
{"title":"304 SQUID矢量磁力计的传感器配置。","authors":"A Schnabel, M Burghoff, S Hartwig, F Petsche, U Steinhoff, D Drung, H Koch","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A novel SQUID vector magnetometer system is introduced which has been specially designed for the use inside the strongly magnetically shielded room BMSR-2 of PTB. The system is housed in a dewar with a flat bottom and an inner diameter of Ø 250 mm. The SQUIDs are arranged so that in addition to the usually measured Z-component of the field the horizontal magnetic fields are measured too. A total of 304 DC-SQUID magnetometers are divided up into 19 identical modules. The 16 low-Tc SQUIDs of each module are located in such a way that an estimation of the magnetic field in all three dimensions is possible at three points inside the module. The 57 SQUIDs of the lowest Z plane of all modules form a hexagonal grid with a base length of 29 mm. The design criteria and the physical principle behind the complex SQUID arrangement are explained.</p>","PeriodicalId":83814,"journal":{"name":"Neurology & clinical neurophysiology : NCN","volume":"2004 ","pages":"70"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sensor configuration for a 304 SQUID vector magnetometer.\",\"authors\":\"A Schnabel, M Burghoff, S Hartwig, F Petsche, U Steinhoff, D Drung, H Koch\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel SQUID vector magnetometer system is introduced which has been specially designed for the use inside the strongly magnetically shielded room BMSR-2 of PTB. The system is housed in a dewar with a flat bottom and an inner diameter of Ø 250 mm. The SQUIDs are arranged so that in addition to the usually measured Z-component of the field the horizontal magnetic fields are measured too. A total of 304 DC-SQUID magnetometers are divided up into 19 identical modules. The 16 low-Tc SQUIDs of each module are located in such a way that an estimation of the magnetic field in all three dimensions is possible at three points inside the module. The 57 SQUIDs of the lowest Z plane of all modules form a hexagonal grid with a base length of 29 mm. The design criteria and the physical principle behind the complex SQUID arrangement are explained.</p>\",\"PeriodicalId\":83814,\"journal\":{\"name\":\"Neurology & clinical neurophysiology : NCN\",\"volume\":\"2004 \",\"pages\":\"70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology & clinical neurophysiology : NCN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology & clinical neurophysiology : NCN","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sensor configuration for a 304 SQUID vector magnetometer.
A novel SQUID vector magnetometer system is introduced which has been specially designed for the use inside the strongly magnetically shielded room BMSR-2 of PTB. The system is housed in a dewar with a flat bottom and an inner diameter of Ø 250 mm. The SQUIDs are arranged so that in addition to the usually measured Z-component of the field the horizontal magnetic fields are measured too. A total of 304 DC-SQUID magnetometers are divided up into 19 identical modules. The 16 low-Tc SQUIDs of each module are located in such a way that an estimation of the magnetic field in all three dimensions is possible at three points inside the module. The 57 SQUIDs of the lowest Z plane of all modules form a hexagonal grid with a base length of 29 mm. The design criteria and the physical principle behind the complex SQUID arrangement are explained.