天体化学研究的统计和机器学习方法

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Johannes Heyl, Serena Viti and Gijs Vermariën
{"title":"天体化学研究的统计和机器学习方法","authors":"Johannes Heyl, Serena Viti and Gijs Vermariën","doi":"10.1039/D3FD00008G","DOIUrl":null,"url":null,"abstract":"<p >In order to obtain a good understanding of astrochemistry, it is crucial to better understand the key parameters that govern grain-surface chemistry. For many chemical networks, these crucial parameters are the binding energies of the species. However, there exists much disagreement regarding these values in the literature. In this work, a Bayesian inference approach is taken to estimate these values. It is found that this is difficult to do in the absence of enough data. The Massive Optimised Parameter Estimation and Data (MOPED) compression algorithm is then used to help determine which species should be prioritised for future detections in order to better constrain the values of binding energies. Finally, an interpretable machine learning approach is taken in order to better understand the non-linear relationship between binding energies and the final abundances of specific species of interest.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"245 ","pages":" 569-585"},"PeriodicalIF":3.3000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A statistical and machine learning approach to the study of astrochemistry\",\"authors\":\"Johannes Heyl, Serena Viti and Gijs Vermariën\",\"doi\":\"10.1039/D3FD00008G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In order to obtain a good understanding of astrochemistry, it is crucial to better understand the key parameters that govern grain-surface chemistry. For many chemical networks, these crucial parameters are the binding energies of the species. However, there exists much disagreement regarding these values in the literature. In this work, a Bayesian inference approach is taken to estimate these values. It is found that this is difficult to do in the absence of enough data. The Massive Optimised Parameter Estimation and Data (MOPED) compression algorithm is then used to help determine which species should be prioritised for future detections in order to better constrain the values of binding energies. Finally, an interpretable machine learning approach is taken in order to better understand the non-linear relationship between binding energies and the final abundances of specific species of interest.</p>\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"245 \",\"pages\":\" 569-585\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/fd/d3fd00008g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/fd/d3fd00008g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地理解天体化学,更好地理解控制颗粒表面化学的关键参数至关重要。对于许多化学网络,这些关键参数是物质的结合能。然而,在文献中对这些价值存在很多分歧。在这项工作中,采用贝叶斯推理方法来估计这些值。研究发现,在缺乏足够数据的情况下,这是很难做到的。然后使用大规模优化参数估计和数据(mped)压缩算法来帮助确定哪些物种应该优先用于未来的检测,以便更好地约束结合能值。最后,采用可解释的机器学习方法,以便更好地理解结合能与感兴趣的特定物种的最终丰度之间的非线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A statistical and machine learning approach to the study of astrochemistry

A statistical and machine learning approach to the study of astrochemistry

In order to obtain a good understanding of astrochemistry, it is crucial to better understand the key parameters that govern grain-surface chemistry. For many chemical networks, these crucial parameters are the binding energies of the species. However, there exists much disagreement regarding these values in the literature. In this work, a Bayesian inference approach is taken to estimate these values. It is found that this is difficult to do in the absence of enough data. The Massive Optimised Parameter Estimation and Data (MOPED) compression algorithm is then used to help determine which species should be prioritised for future detections in order to better constrain the values of binding energies. Finally, an interpretable machine learning approach is taken in order to better understand the non-linear relationship between binding energies and the final abundances of specific species of interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信