职业性接触有机溶剂会影响颜色辨别吗?

Richard B Lomax, Peter Ridgway, Maureen Meldrum
{"title":"职业性接触有机溶剂会影响颜色辨别吗?","authors":"Richard B Lomax,&nbsp;Peter Ridgway,&nbsp;Maureen Meldrum","doi":"10.2165/00139709-200423020-00004","DOIUrl":null,"url":null,"abstract":"<p><p>This review assesses the evidence regarding the effects of occupational exposure to organic solvents on colour discrimination and investigates exposure-response relationships and reversibility. This review also considers the current state of knowledge of the possible mechanisms underlying changes in colour vision, and the human health significance of any reported changes. Among the commonly used organic solvents, styrene has been investigated the most thoroughly. Studies of styrene-exposed workers in Germany, Italy and Japan provide a sufficiently consistent body of evidence to support a robust conclusion that styrene does cause an impairment of colour discrimination relative to age-matched controls. Generally, the impairment of colour discrimination observed in styrene-exposed workers tends to be of the tritan (blue-yellow) type, although some cases of red-green impairment have also been found. The limited information available on exposure-response relationships indicates that the effects on colour discrimination would not be expected at 8-hour time weighted average (8 h TWA) exposures <20 ppm, although a precise threshold cannot be determined. The data on reversibility are limited and inconclusive. The results from the most rigorous study in which this aspect was investigated point to a reversibility of effects after a 4-week exposure-free period, whereas results from a study with limitations suggest a persistence of effect. The effects of toluene, tetrachloroethylene or mixed solvent exposure have also been investigated, although the information available is generally less reliable than for styrene. For toluene, it can be confidently concluded that this solvent does not have an acute effect on colour discrimination, even when exposures are relatively high (50-150 ppm 8 h TWA, and 290-360 ppm 30 minutes TWA). However, studies are inconclusive on whether long-term or repeated exposure to toluene can cause a persistent impairment of colour discrimination. There are few studies that have specifically investigated the effects of tetrachloroethylene on colour discrimination. Among these studies, none has examined the potential for any acute effects of this solvent vapour. A large-scale study in Japanese workers showed no effects of long-term exposure to tetrachloroethylene concentrations in the region of 12-13 ppm. However, the test methodology used was relatively insensitive to changes in colour discrimination, hence the results do not provide reassurance for an absence of subtle effects. A study in Italian dry-cleaners suggested a slight impairment of colour discrimination relative to controls, associated with relatively low exposures to tetrachloroethylene (mean 8 h TWA exposure approximately 6 ppm). The studies concerning the effects of mixed solvent exposure on colour discrimination are based on workers exposed to solvents in paints and lacquers, workers from the printing and petrochemical industries, people working in or living near to microelectronics factories and children exposed to solvents prenatally. However, these studies are subject to design limitations or methodological irregularities, such that no conclusions regarding the effects of mixed solvent exposure on colour discrimination can be drawn. Overall, the only credible evidence for an effect of solvents on colour discrimination derives from the studies on styrene. Because of limitations in the data for other solvents it is not possible to determine whether the evidence for styrene reflects a generic property of solvents. The mechanisms of styrene-induced effects on colour discrimination have not been properly investigated and can only be the subject of speculation. One conclusion that can be drawn is that pathological changes to the ocular system, such as changes to the lens, are unlikely to be involved. This is because there is an absence of convincing evidence for such changes from medical examinations conducted in epidemiological studies of solvent-exposed workers. Also, it seems unlikely that effects on colour discrimination are a nonspecific consequence of more generalised CNS depression, given that styrene-induced effects on colour discrimination appear to occur below the threshold for narcotic effects. The effects of styrene on colour discrimination are subtle and involve an impairment of the ability to discriminate accurately between closely related shades of the same colour rather than 'colour blindness'. There is no valid basis for using colour discrimination as a marker for other forms of solvent-induced neurotoxicity.</p>","PeriodicalId":87031,"journal":{"name":"Toxicological reviews","volume":"23 2","pages":"91-121"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00139709-200423020-00004","citationCount":"37","resultStr":"{\"title\":\"Does occupational exposure to organic solvents affect colour discrimination?\",\"authors\":\"Richard B Lomax,&nbsp;Peter Ridgway,&nbsp;Maureen Meldrum\",\"doi\":\"10.2165/00139709-200423020-00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review assesses the evidence regarding the effects of occupational exposure to organic solvents on colour discrimination and investigates exposure-response relationships and reversibility. This review also considers the current state of knowledge of the possible mechanisms underlying changes in colour vision, and the human health significance of any reported changes. Among the commonly used organic solvents, styrene has been investigated the most thoroughly. Studies of styrene-exposed workers in Germany, Italy and Japan provide a sufficiently consistent body of evidence to support a robust conclusion that styrene does cause an impairment of colour discrimination relative to age-matched controls. Generally, the impairment of colour discrimination observed in styrene-exposed workers tends to be of the tritan (blue-yellow) type, although some cases of red-green impairment have also been found. The limited information available on exposure-response relationships indicates that the effects on colour discrimination would not be expected at 8-hour time weighted average (8 h TWA) exposures <20 ppm, although a precise threshold cannot be determined. The data on reversibility are limited and inconclusive. The results from the most rigorous study in which this aspect was investigated point to a reversibility of effects after a 4-week exposure-free period, whereas results from a study with limitations suggest a persistence of effect. The effects of toluene, tetrachloroethylene or mixed solvent exposure have also been investigated, although the information available is generally less reliable than for styrene. For toluene, it can be confidently concluded that this solvent does not have an acute effect on colour discrimination, even when exposures are relatively high (50-150 ppm 8 h TWA, and 290-360 ppm 30 minutes TWA). However, studies are inconclusive on whether long-term or repeated exposure to toluene can cause a persistent impairment of colour discrimination. There are few studies that have specifically investigated the effects of tetrachloroethylene on colour discrimination. Among these studies, none has examined the potential for any acute effects of this solvent vapour. A large-scale study in Japanese workers showed no effects of long-term exposure to tetrachloroethylene concentrations in the region of 12-13 ppm. However, the test methodology used was relatively insensitive to changes in colour discrimination, hence the results do not provide reassurance for an absence of subtle effects. A study in Italian dry-cleaners suggested a slight impairment of colour discrimination relative to controls, associated with relatively low exposures to tetrachloroethylene (mean 8 h TWA exposure approximately 6 ppm). The studies concerning the effects of mixed solvent exposure on colour discrimination are based on workers exposed to solvents in paints and lacquers, workers from the printing and petrochemical industries, people working in or living near to microelectronics factories and children exposed to solvents prenatally. However, these studies are subject to design limitations or methodological irregularities, such that no conclusions regarding the effects of mixed solvent exposure on colour discrimination can be drawn. Overall, the only credible evidence for an effect of solvents on colour discrimination derives from the studies on styrene. Because of limitations in the data for other solvents it is not possible to determine whether the evidence for styrene reflects a generic property of solvents. The mechanisms of styrene-induced effects on colour discrimination have not been properly investigated and can only be the subject of speculation. One conclusion that can be drawn is that pathological changes to the ocular system, such as changes to the lens, are unlikely to be involved. This is because there is an absence of convincing evidence for such changes from medical examinations conducted in epidemiological studies of solvent-exposed workers. Also, it seems unlikely that effects on colour discrimination are a nonspecific consequence of more generalised CNS depression, given that styrene-induced effects on colour discrimination appear to occur below the threshold for narcotic effects. The effects of styrene on colour discrimination are subtle and involve an impairment of the ability to discriminate accurately between closely related shades of the same colour rather than 'colour blindness'. There is no valid basis for using colour discrimination as a marker for other forms of solvent-induced neurotoxicity.</p>\",\"PeriodicalId\":87031,\"journal\":{\"name\":\"Toxicological reviews\",\"volume\":\"23 2\",\"pages\":\"91-121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2165/00139709-200423020-00004\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2165/00139709-200423020-00004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00139709-200423020-00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本综述评估了职业接触有机溶剂对颜色辨别影响的证据,并调查了接触-反应关系和可逆性。本综述还考虑了目前对色觉变化的可能机制的了解状况,以及任何已报道的变化对人类健康的意义。在常用的有机溶剂中,苯乙烯的研究最为深入。对德国、意大利和日本接触苯乙烯的工人的研究提供了足够一致的证据,支持一个强有力的结论,即相对于年龄匹配的对照组,苯乙烯确实会导致颜色辨别能力受损。一般来说,在接触苯乙烯的工人中观察到的颜色辨别障碍倾向于三色(蓝黄)型,尽管也发现了一些红绿障碍的病例。有关暴露-反应关系的有限信息表明,8小时时间加权平均(8小时TWA)暴露不会对颜色辨别产生影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does occupational exposure to organic solvents affect colour discrimination?

This review assesses the evidence regarding the effects of occupational exposure to organic solvents on colour discrimination and investigates exposure-response relationships and reversibility. This review also considers the current state of knowledge of the possible mechanisms underlying changes in colour vision, and the human health significance of any reported changes. Among the commonly used organic solvents, styrene has been investigated the most thoroughly. Studies of styrene-exposed workers in Germany, Italy and Japan provide a sufficiently consistent body of evidence to support a robust conclusion that styrene does cause an impairment of colour discrimination relative to age-matched controls. Generally, the impairment of colour discrimination observed in styrene-exposed workers tends to be of the tritan (blue-yellow) type, although some cases of red-green impairment have also been found. The limited information available on exposure-response relationships indicates that the effects on colour discrimination would not be expected at 8-hour time weighted average (8 h TWA) exposures <20 ppm, although a precise threshold cannot be determined. The data on reversibility are limited and inconclusive. The results from the most rigorous study in which this aspect was investigated point to a reversibility of effects after a 4-week exposure-free period, whereas results from a study with limitations suggest a persistence of effect. The effects of toluene, tetrachloroethylene or mixed solvent exposure have also been investigated, although the information available is generally less reliable than for styrene. For toluene, it can be confidently concluded that this solvent does not have an acute effect on colour discrimination, even when exposures are relatively high (50-150 ppm 8 h TWA, and 290-360 ppm 30 minutes TWA). However, studies are inconclusive on whether long-term or repeated exposure to toluene can cause a persistent impairment of colour discrimination. There are few studies that have specifically investigated the effects of tetrachloroethylene on colour discrimination. Among these studies, none has examined the potential for any acute effects of this solvent vapour. A large-scale study in Japanese workers showed no effects of long-term exposure to tetrachloroethylene concentrations in the region of 12-13 ppm. However, the test methodology used was relatively insensitive to changes in colour discrimination, hence the results do not provide reassurance for an absence of subtle effects. A study in Italian dry-cleaners suggested a slight impairment of colour discrimination relative to controls, associated with relatively low exposures to tetrachloroethylene (mean 8 h TWA exposure approximately 6 ppm). The studies concerning the effects of mixed solvent exposure on colour discrimination are based on workers exposed to solvents in paints and lacquers, workers from the printing and petrochemical industries, people working in or living near to microelectronics factories and children exposed to solvents prenatally. However, these studies are subject to design limitations or methodological irregularities, such that no conclusions regarding the effects of mixed solvent exposure on colour discrimination can be drawn. Overall, the only credible evidence for an effect of solvents on colour discrimination derives from the studies on styrene. Because of limitations in the data for other solvents it is not possible to determine whether the evidence for styrene reflects a generic property of solvents. The mechanisms of styrene-induced effects on colour discrimination have not been properly investigated and can only be the subject of speculation. One conclusion that can be drawn is that pathological changes to the ocular system, such as changes to the lens, are unlikely to be involved. This is because there is an absence of convincing evidence for such changes from medical examinations conducted in epidemiological studies of solvent-exposed workers. Also, it seems unlikely that effects on colour discrimination are a nonspecific consequence of more generalised CNS depression, given that styrene-induced effects on colour discrimination appear to occur below the threshold for narcotic effects. The effects of styrene on colour discrimination are subtle and involve an impairment of the ability to discriminate accurately between closely related shades of the same colour rather than 'colour blindness'. There is no valid basis for using colour discrimination as a marker for other forms of solvent-induced neurotoxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信