{"title":"整合素及其配体的三维结构,以及细胞粘附的构象调控。","authors":"Timothy A Springer, Jia-Huai Wang","doi":"10.1016/S0065-3233(04)68002-8","DOIUrl":null,"url":null,"abstract":"<p><p>Integrins are a structurally elaborate family of adhesion molecules that transmit signals bidirectionally across the plasma membrane by undergoing large-scale structural rearrangements. By regulating cell-cell and cell-matrix contacts, integrins participate in a wide-range of biological interactions including development, tissue repair, angiogenesis, inflammation and hemostasis. From a therapeutic standpoint, integrins are probably the most important class of cell adhesion receptors. Structural investigations on integrin-ligand interactions reveal remarkable features in molecular detail. These details include the atomic basis for divalent cation-dependent ligand binding and how conformational signals are propagated long distances from one domain to another between the cytoplasm and the extracellular ligand binding site that regulate affinity for ligand, and conversely, cytosolic signaling pathways.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"68 ","pages":"29-63"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(04)68002-8","citationCount":"166","resultStr":"{\"title\":\"The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion.\",\"authors\":\"Timothy A Springer, Jia-Huai Wang\",\"doi\":\"10.1016/S0065-3233(04)68002-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrins are a structurally elaborate family of adhesion molecules that transmit signals bidirectionally across the plasma membrane by undergoing large-scale structural rearrangements. By regulating cell-cell and cell-matrix contacts, integrins participate in a wide-range of biological interactions including development, tissue repair, angiogenesis, inflammation and hemostasis. From a therapeutic standpoint, integrins are probably the most important class of cell adhesion receptors. Structural investigations on integrin-ligand interactions reveal remarkable features in molecular detail. These details include the atomic basis for divalent cation-dependent ligand binding and how conformational signals are propagated long distances from one domain to another between the cytoplasm and the extracellular ligand binding site that regulate affinity for ligand, and conversely, cytosolic signaling pathways.</p>\",\"PeriodicalId\":51216,\"journal\":{\"name\":\"Advances in Protein Chemistry\",\"volume\":\"68 \",\"pages\":\"29-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0065-3233(04)68002-8\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Protein Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/S0065-3233(04)68002-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Protein Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S0065-3233(04)68002-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion.
Integrins are a structurally elaborate family of adhesion molecules that transmit signals bidirectionally across the plasma membrane by undergoing large-scale structural rearrangements. By regulating cell-cell and cell-matrix contacts, integrins participate in a wide-range of biological interactions including development, tissue repair, angiogenesis, inflammation and hemostasis. From a therapeutic standpoint, integrins are probably the most important class of cell adhesion receptors. Structural investigations on integrin-ligand interactions reveal remarkable features in molecular detail. These details include the atomic basis for divalent cation-dependent ligand binding and how conformational signals are propagated long distances from one domain to another between the cytoplasm and the extracellular ligand binding site that regulate affinity for ligand, and conversely, cytosolic signaling pathways.