基于互信息和冗余协同系数的特征选择。

Sheng Yang, Jun Gu
{"title":"基于互信息和冗余协同系数的特征选择。","authors":"Sheng Yang,&nbsp;Jun Gu","doi":"10.1631/jzus.2004.1382","DOIUrl":null,"url":null,"abstract":"<p><p>Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a novel redundancy and synergy measure of features to express the class feature, is defined by mutual information. The information maximization rule was applied to derive the heuristic feature subset selection method based on mutual information and redundancy-synergy coefficient. Our experiment results showed the good performance of the new feature selection method.</p>","PeriodicalId":85042,"journal":{"name":"Journal of Zhejiang University. Science","volume":"5 11","pages":"1382-91"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.2004.1382","citationCount":"12","resultStr":"{\"title\":\"Feature selection based on mutual information and redundancy-synergy coefficient.\",\"authors\":\"Sheng Yang,&nbsp;Jun Gu\",\"doi\":\"10.1631/jzus.2004.1382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a novel redundancy and synergy measure of features to express the class feature, is defined by mutual information. The information maximization rule was applied to derive the heuristic feature subset selection method based on mutual information and redundancy-synergy coefficient. Our experiment results showed the good performance of the new feature selection method.</p>\",\"PeriodicalId\":85042,\"journal\":{\"name\":\"Journal of Zhejiang University. Science\",\"volume\":\"5 11\",\"pages\":\"1382-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1631/jzus.2004.1382\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University. Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.2004.1382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University. Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.2004.1382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

互信息是特征子集的重要信息度量。本文提出了一种计算特征子集互信息的哈希机制。冗余协同系数是一种新的特征的冗余协同度量,通过互信息来表达类特征。利用信息最大化原则,导出了基于互信息和冗余协同系数的启发式特征子集选择方法。实验结果表明,新的特征选择方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection based on mutual information and redundancy-synergy coefficient.

Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a novel redundancy and synergy measure of features to express the class feature, is defined by mutual information. The information maximization rule was applied to derive the heuristic feature subset selection method based on mutual information and redundancy-synergy coefficient. Our experiment results showed the good performance of the new feature selection method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信