{"title":"革兰氏阴性菌大环内酯类、利可沙胺类、链霉素类、酮类和恶唑烷酮类耐药基因的分布。","authors":"Marilyn C Roberts","doi":"10.2174/1568005043340678","DOIUrl":null,"url":null,"abstract":"<p><p>A number of different mechanisms of macrolide resistance have been described in Gram-negative bacteria. These include 16 acquired genes (esterases, phosphorylases, rRNA methylases, and effluxes) and include those thought to be unique to Gram-negative bacteria (both esterases and two of the phosphorylases) and those shared with Gram-positive bacteria (one phosphorylase) and those primarily of Gram-positive origin (rRNA methylases and efflux genes). In addition, mutations, which modify the 23S rRNA, ribosomal proteins L4 and/or L22, and/or changes in expression of innate efflux systems which occur by missense, deletion and/or insertion events have been described in five Gram-negative groups, while an innate transferase conferring resistance to streptogramin A has been identified in a sixth genus. However, the amount of information on both acquisition and mutations leading to macrolide, lincosamides, streptogramins, ketolides and oxazolidinones (MLSKO) resistance is limited. As a consequence this review likely underestimates the true distribution of acquired genes and mutations in Gram-negative bacteria. As use of these drugs increases, it is likely that interaction between members of the MLSKO antibiotic family and Gram-negative bacteria will continue to change resistance to these antibiotics; by mutations of existing genes as well as by acquisition and perhaps mutations of acquired resistant genes in these organisms and more work needs to be done to get a clearer picture of what is in the Gram-negative population now, such that changes can be monitored.</p>","PeriodicalId":84525,"journal":{"name":"Current drug targets. Infectious disorders","volume":"4 3","pages":"207-15"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Distribution of macrolide, lincosamide, streptogramin, ketolide and oxazolidinone (MLSKO) resistance genes in Gram-negative bacteria.\",\"authors\":\"Marilyn C Roberts\",\"doi\":\"10.2174/1568005043340678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A number of different mechanisms of macrolide resistance have been described in Gram-negative bacteria. These include 16 acquired genes (esterases, phosphorylases, rRNA methylases, and effluxes) and include those thought to be unique to Gram-negative bacteria (both esterases and two of the phosphorylases) and those shared with Gram-positive bacteria (one phosphorylase) and those primarily of Gram-positive origin (rRNA methylases and efflux genes). In addition, mutations, which modify the 23S rRNA, ribosomal proteins L4 and/or L22, and/or changes in expression of innate efflux systems which occur by missense, deletion and/or insertion events have been described in five Gram-negative groups, while an innate transferase conferring resistance to streptogramin A has been identified in a sixth genus. However, the amount of information on both acquisition and mutations leading to macrolide, lincosamides, streptogramins, ketolides and oxazolidinones (MLSKO) resistance is limited. As a consequence this review likely underestimates the true distribution of acquired genes and mutations in Gram-negative bacteria. As use of these drugs increases, it is likely that interaction between members of the MLSKO antibiotic family and Gram-negative bacteria will continue to change resistance to these antibiotics; by mutations of existing genes as well as by acquisition and perhaps mutations of acquired resistant genes in these organisms and more work needs to be done to get a clearer picture of what is in the Gram-negative population now, such that changes can be monitored.</p>\",\"PeriodicalId\":84525,\"journal\":{\"name\":\"Current drug targets. Infectious disorders\",\"volume\":\"4 3\",\"pages\":\"207-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug targets. Infectious disorders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1568005043340678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug targets. Infectious disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1568005043340678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distribution of macrolide, lincosamide, streptogramin, ketolide and oxazolidinone (MLSKO) resistance genes in Gram-negative bacteria.
A number of different mechanisms of macrolide resistance have been described in Gram-negative bacteria. These include 16 acquired genes (esterases, phosphorylases, rRNA methylases, and effluxes) and include those thought to be unique to Gram-negative bacteria (both esterases and two of the phosphorylases) and those shared with Gram-positive bacteria (one phosphorylase) and those primarily of Gram-positive origin (rRNA methylases and efflux genes). In addition, mutations, which modify the 23S rRNA, ribosomal proteins L4 and/or L22, and/or changes in expression of innate efflux systems which occur by missense, deletion and/or insertion events have been described in five Gram-negative groups, while an innate transferase conferring resistance to streptogramin A has been identified in a sixth genus. However, the amount of information on both acquisition and mutations leading to macrolide, lincosamides, streptogramins, ketolides and oxazolidinones (MLSKO) resistance is limited. As a consequence this review likely underestimates the true distribution of acquired genes and mutations in Gram-negative bacteria. As use of these drugs increases, it is likely that interaction between members of the MLSKO antibiotic family and Gram-negative bacteria will continue to change resistance to these antibiotics; by mutations of existing genes as well as by acquisition and perhaps mutations of acquired resistant genes in these organisms and more work needs to be done to get a clearer picture of what is in the Gram-negative population now, such that changes can be monitored.