喜树碱和拓扑异构酶I:迈出了第一步。用喜树碱和新型抗癌药物靶向拓扑异构酶I以外的基因组:DNA复制、修复和细胞周期检查点的重要性。

Yves Pommier
{"title":"喜树碱和拓扑异构酶I:迈出了第一步。用喜树碱和新型抗癌药物靶向拓扑异构酶I以外的基因组:DNA复制、修复和细胞周期检查点的重要性。","authors":"Yves Pommier","doi":"10.2174/1568011043352777","DOIUrl":null,"url":null,"abstract":"<p><p>Camptothecins selectively target topoisomerase I (Top1) by trapping the catalytic intermediate of the Top1-DNA reaction, the cleavage complex. Hence, camptothecins represent a paradigm for targeting macromolecular interactions. Instead of preventing the binding of the two macromolecules they target (Top1 and DNA), camptothecins slow down the dissociation of these macromolecules. The activity of camptothecins underlines the usefulness of screening for drugs that inhibit the dissociation of macromolecules. Camptothecins and non-CPT Top1 inhibitors are being developed to improve the pharmacodynamics, pharmacokinetics and clinical pharmacology of camptothecins, and it is likely that drugs with improved anticancer activity will be discovered. Although Top1 is the only primary target of camptothecins, the mechanisms of camptothecins' anticancer activity rest beyond the formation of cleavage complexes. Indeed, Top1 cleavage complexes lead to replication- (and transcription-) mediated DNA damage. It is likely that DNA damage can be repaired more efficiently in normal than in cancer cells that are intrinsically deficient for DNA repair and cell cycle checkpoints. Evaluating such deficiencies in clinical samples is becoming possible. If specific deficiencies are associated with clinical responses, their detection should guide therapeutic decisions. Furthermore, targeting DNA repair (Tdp1) and checkpoints (ATM, Chk1 and Chk2) might increase the selectivity of Top1 inhibitors for tumors, thereby increasing the antitumor activity while reducing the side effects of Top1 inhibitors.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"4 5","pages":"429-34"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011043352777","citationCount":"95","resultStr":"{\"title\":\"Camptothecins and topoisomerase I: a foot in the door. Targeting the genome beyond topoisomerase I with camptothecins and novel anticancer drugs: importance of DNA replication, repair and cell cycle checkpoints.\",\"authors\":\"Yves Pommier\",\"doi\":\"10.2174/1568011043352777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Camptothecins selectively target topoisomerase I (Top1) by trapping the catalytic intermediate of the Top1-DNA reaction, the cleavage complex. Hence, camptothecins represent a paradigm for targeting macromolecular interactions. Instead of preventing the binding of the two macromolecules they target (Top1 and DNA), camptothecins slow down the dissociation of these macromolecules. The activity of camptothecins underlines the usefulness of screening for drugs that inhibit the dissociation of macromolecules. Camptothecins and non-CPT Top1 inhibitors are being developed to improve the pharmacodynamics, pharmacokinetics and clinical pharmacology of camptothecins, and it is likely that drugs with improved anticancer activity will be discovered. Although Top1 is the only primary target of camptothecins, the mechanisms of camptothecins' anticancer activity rest beyond the formation of cleavage complexes. Indeed, Top1 cleavage complexes lead to replication- (and transcription-) mediated DNA damage. It is likely that DNA damage can be repaired more efficiently in normal than in cancer cells that are intrinsically deficient for DNA repair and cell cycle checkpoints. Evaluating such deficiencies in clinical samples is becoming possible. If specific deficiencies are associated with clinical responses, their detection should guide therapeutic decisions. Furthermore, targeting DNA repair (Tdp1) and checkpoints (ATM, Chk1 and Chk2) might increase the selectivity of Top1 inhibitors for tumors, thereby increasing the antitumor activity while reducing the side effects of Top1 inhibitors.</p>\",\"PeriodicalId\":10914,\"journal\":{\"name\":\"Current medicinal chemistry. Anti-cancer agents\",\"volume\":\"4 5\",\"pages\":\"429-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1568011043352777\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry. Anti-cancer agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1568011043352777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry. Anti-cancer agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1568011043352777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

喜树碱通过捕获Top1- dna反应的催化中间体,裂解复合体,选择性地靶向拓扑异构酶I (Top1)。因此,喜树碱代表了靶向大分子相互作用的范例。喜树碱不是阻止它们靶向的两个大分子(Top1和DNA)的结合,而是减缓这些大分子的解离。喜树碱的活性强调了筛选抑制大分子解离的药物的有效性。人们正在开发喜树碱和非cpt Top1抑制剂,以改善喜树碱的药效学、药代动力学和临床药理学,很可能会发现具有更好抗癌活性的药物。虽然Top1是喜树碱唯一的主要靶点,但喜树碱抗癌活性的机制并不局限于裂解复合物的形成。事实上,Top1切割复合体导致复制(和转录)介导的DNA损伤。很可能在正常细胞中DNA损伤的修复比在本质上缺乏DNA修复和细胞周期检查点的癌细胞中更有效。在临床样本中评估这些缺陷已经成为可能。如果特定的缺陷与临床反应有关,它们的检测应该指导治疗决策。此外,靶向DNA修复(Tdp1)和检查点(ATM、Chk1和Chk2)可能会增加Top1抑制剂对肿瘤的选择性,从而增加抗肿瘤活性,同时减少Top1抑制剂的副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Camptothecins and topoisomerase I: a foot in the door. Targeting the genome beyond topoisomerase I with camptothecins and novel anticancer drugs: importance of DNA replication, repair and cell cycle checkpoints.

Camptothecins selectively target topoisomerase I (Top1) by trapping the catalytic intermediate of the Top1-DNA reaction, the cleavage complex. Hence, camptothecins represent a paradigm for targeting macromolecular interactions. Instead of preventing the binding of the two macromolecules they target (Top1 and DNA), camptothecins slow down the dissociation of these macromolecules. The activity of camptothecins underlines the usefulness of screening for drugs that inhibit the dissociation of macromolecules. Camptothecins and non-CPT Top1 inhibitors are being developed to improve the pharmacodynamics, pharmacokinetics and clinical pharmacology of camptothecins, and it is likely that drugs with improved anticancer activity will be discovered. Although Top1 is the only primary target of camptothecins, the mechanisms of camptothecins' anticancer activity rest beyond the formation of cleavage complexes. Indeed, Top1 cleavage complexes lead to replication- (and transcription-) mediated DNA damage. It is likely that DNA damage can be repaired more efficiently in normal than in cancer cells that are intrinsically deficient for DNA repair and cell cycle checkpoints. Evaluating such deficiencies in clinical samples is becoming possible. If specific deficiencies are associated with clinical responses, their detection should guide therapeutic decisions. Furthermore, targeting DNA repair (Tdp1) and checkpoints (ATM, Chk1 and Chk2) might increase the selectivity of Top1 inhibitors for tumors, thereby increasing the antitumor activity while reducing the side effects of Top1 inhibitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信