Thomas Karopka, Thomas Scheel, Sven Bansemer, Anne Glass
{"title":"基于文本挖掘和基因表达数据的基因关系网络自动构建。","authors":"Thomas Karopka, Thomas Scheel, Sven Bansemer, Anne Glass","doi":"10.1080/14639230412331280422","DOIUrl":null,"url":null,"abstract":"<p><p>Microarray gene expression analysis is a powerful high-throughput technique that enables researchers to monitor the expression of thousands of genes simultaneously. Using this methodology huge amounts of data are produced which have to be analysed. Clustering algorithms are used to group genes together based on a predefined distance measure. However, clustering algorithms do not necessarily group the genes in a biological meaningful way. Additional information is needed to improve the identification of disease relevant genes. The primary objective of our project is to support the analysis of microarray gene expression data by construction of gene relation networks (GRNs). Required information can not be found in a structured representation like a database. In contrast, a large number of relations are described in biomedical literature. The main outcome of this project is the implementation of a software system that provides clinicians and researchers with a tool that supports the analysis of microarray gene expression data by mapping known relationships from the biomedical literature to local gene expression experiments.</p>","PeriodicalId":80069,"journal":{"name":"Medical informatics and the Internet in medicine","volume":"29 2","pages":"169-83"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14639230412331280422","citationCount":"20","resultStr":"{\"title\":\"Automatic construction of gene relation networks using text mining and gene expression data.\",\"authors\":\"Thomas Karopka, Thomas Scheel, Sven Bansemer, Anne Glass\",\"doi\":\"10.1080/14639230412331280422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microarray gene expression analysis is a powerful high-throughput technique that enables researchers to monitor the expression of thousands of genes simultaneously. Using this methodology huge amounts of data are produced which have to be analysed. Clustering algorithms are used to group genes together based on a predefined distance measure. However, clustering algorithms do not necessarily group the genes in a biological meaningful way. Additional information is needed to improve the identification of disease relevant genes. The primary objective of our project is to support the analysis of microarray gene expression data by construction of gene relation networks (GRNs). Required information can not be found in a structured representation like a database. In contrast, a large number of relations are described in biomedical literature. The main outcome of this project is the implementation of a software system that provides clinicians and researchers with a tool that supports the analysis of microarray gene expression data by mapping known relationships from the biomedical literature to local gene expression experiments.</p>\",\"PeriodicalId\":80069,\"journal\":{\"name\":\"Medical informatics and the Internet in medicine\",\"volume\":\"29 2\",\"pages\":\"169-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14639230412331280422\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical informatics and the Internet in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14639230412331280422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical informatics and the Internet in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14639230412331280422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic construction of gene relation networks using text mining and gene expression data.
Microarray gene expression analysis is a powerful high-throughput technique that enables researchers to monitor the expression of thousands of genes simultaneously. Using this methodology huge amounts of data are produced which have to be analysed. Clustering algorithms are used to group genes together based on a predefined distance measure. However, clustering algorithms do not necessarily group the genes in a biological meaningful way. Additional information is needed to improve the identification of disease relevant genes. The primary objective of our project is to support the analysis of microarray gene expression data by construction of gene relation networks (GRNs). Required information can not be found in a structured representation like a database. In contrast, a large number of relations are described in biomedical literature. The main outcome of this project is the implementation of a software system that provides clinicians and researchers with a tool that supports the analysis of microarray gene expression data by mapping known relationships from the biomedical literature to local gene expression experiments.