{"title":"人体股骨的动态弯曲公差和弹塑性材料性能。","authors":"J R Funk, J R Kerrigan, J R Crandall","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to provide data on the structural tolerance and material properties of the human femur in dynamic bending. Fifteen (15) isolated femurs from eight (8) males were tested in either posterior-to-anterior or lateral-to-medial three-point bending. The failure moment was 458 +/- 95 Nm and did not differ significantly with loading direction. A method was developed to estimate the elastic-plastic material properties of the bone using both force-deflection data and strain gauge measurements. The bone material appeared to yield at about one third of the ultimate strain level prior to fracture. It is hoped that these data will aid in the development of injury criteria and finite element models for predicting injuries to pedestrians and vehicle occupants.</p>","PeriodicalId":80490,"journal":{"name":"Annual proceedings. Association for the Advancement of Automotive Medicine","volume":"48 ","pages":"215-33"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217417/pdf/aam48_215.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamic bending tolerance and elastic-plastic material properties of the human femur.\",\"authors\":\"J R Funk, J R Kerrigan, J R Crandall\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study was to provide data on the structural tolerance and material properties of the human femur in dynamic bending. Fifteen (15) isolated femurs from eight (8) males were tested in either posterior-to-anterior or lateral-to-medial three-point bending. The failure moment was 458 +/- 95 Nm and did not differ significantly with loading direction. A method was developed to estimate the elastic-plastic material properties of the bone using both force-deflection data and strain gauge measurements. The bone material appeared to yield at about one third of the ultimate strain level prior to fracture. It is hoped that these data will aid in the development of injury criteria and finite element models for predicting injuries to pedestrians and vehicle occupants.</p>\",\"PeriodicalId\":80490,\"journal\":{\"name\":\"Annual proceedings. Association for the Advancement of Automotive Medicine\",\"volume\":\"48 \",\"pages\":\"215-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217417/pdf/aam48_215.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual proceedings. Association for the Advancement of Automotive Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual proceedings. Association for the Advancement of Automotive Medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic bending tolerance and elastic-plastic material properties of the human femur.
The objective of this study was to provide data on the structural tolerance and material properties of the human femur in dynamic bending. Fifteen (15) isolated femurs from eight (8) males were tested in either posterior-to-anterior or lateral-to-medial three-point bending. The failure moment was 458 +/- 95 Nm and did not differ significantly with loading direction. A method was developed to estimate the elastic-plastic material properties of the bone using both force-deflection data and strain gauge measurements. The bone material appeared to yield at about one third of the ultimate strain level prior to fracture. It is hoped that these data will aid in the development of injury criteria and finite element models for predicting injuries to pedestrians and vehicle occupants.