{"title":"α -半乳糖神经酰胺诱导转移性肝肿瘤抗肿瘤免疫的肿瘤浸润效应细胞。","authors":"Takuya Osada, Hirokazu Nagawa, Yoichi Shibata","doi":"10.1186/1476-8518-2-7","DOIUrl":null,"url":null,"abstract":"<p><p>BACKGROUND: alpha-Galactosylceramide (alpha-GalCer) can be presented by CD1d molecules of antigen-presenting cells, and is known to induce a potent NKT cell-dependent cytotoxic response against tumor cells. However, the main effector cells in alpha-GalCer-induced antitumor immunity are still controversial. METHODS: In order to elucidate the cell phenotype that plays the most important role in alpha-GalCer-induced antitumor immunity, we purified and analyzed tumor-infiltrating leukocytes (TILs) from liver metastatic nodules of a colon cancer cell line (Colon26), comparing alpha-GalCer- and control vehicle-treated mice. Flow cytometry was performed to analyze cell phenotype in TILs and IFN-gamma ELISA was performed to detect antigen-specific immune response. RESULTS: Flow cytometry analysis showed a significantly higher infiltration of NK cells (DX5+, T cell receptor alphabeta (TCR)-) into tumors in alpha-GalCer-treated mice compared to vehicle-treated mice. The DX5+TCR+ cell population was not significantly different between these two groups, indicating that these cells were not the main effector cells. Interestingly, the CD8+ T cell population was increased in TILs of alpha-GalCer-treated mice, and the activation level of these cells based on CD69 expression was higher than that in vehicle-treated mice. Moreover, the number of tumor-infiltrating dendritic cells (DCs) was increased in alpha-GalCer-treated mice. IFN-gamma ELISA showed stronger antigen-specific response in TILs from alpha-GalCer-treated mice compared to those from vehicle-treated mice, although the difference between these two groups was not significant. CONCLUSIONS: In alpha-GalCer-induced antitumor immunity, NK cells seem to be some of the main effector cells and both CD8+ T cells and DCs, which are related to acquired immunity, might also play important roles in this antitumor immune response. These results suggest that alpha-GalCer has a multifunctional role in modulation of the immune response.</p>","PeriodicalId":84998,"journal":{"name":"Journal of immune based therapies and vaccines","volume":"2 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1476-8518-2-7","citationCount":"20","resultStr":"{\"title\":\"Tumor-infiltrating effector cells of alpha-galactosylceramide-induced antitumor immunity in metastatic liver tumor.\",\"authors\":\"Takuya Osada, Hirokazu Nagawa, Yoichi Shibata\",\"doi\":\"10.1186/1476-8518-2-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BACKGROUND: alpha-Galactosylceramide (alpha-GalCer) can be presented by CD1d molecules of antigen-presenting cells, and is known to induce a potent NKT cell-dependent cytotoxic response against tumor cells. However, the main effector cells in alpha-GalCer-induced antitumor immunity are still controversial. METHODS: In order to elucidate the cell phenotype that plays the most important role in alpha-GalCer-induced antitumor immunity, we purified and analyzed tumor-infiltrating leukocytes (TILs) from liver metastatic nodules of a colon cancer cell line (Colon26), comparing alpha-GalCer- and control vehicle-treated mice. Flow cytometry was performed to analyze cell phenotype in TILs and IFN-gamma ELISA was performed to detect antigen-specific immune response. RESULTS: Flow cytometry analysis showed a significantly higher infiltration of NK cells (DX5+, T cell receptor alphabeta (TCR)-) into tumors in alpha-GalCer-treated mice compared to vehicle-treated mice. The DX5+TCR+ cell population was not significantly different between these two groups, indicating that these cells were not the main effector cells. Interestingly, the CD8+ T cell population was increased in TILs of alpha-GalCer-treated mice, and the activation level of these cells based on CD69 expression was higher than that in vehicle-treated mice. Moreover, the number of tumor-infiltrating dendritic cells (DCs) was increased in alpha-GalCer-treated mice. IFN-gamma ELISA showed stronger antigen-specific response in TILs from alpha-GalCer-treated mice compared to those from vehicle-treated mice, although the difference between these two groups was not significant. CONCLUSIONS: In alpha-GalCer-induced antitumor immunity, NK cells seem to be some of the main effector cells and both CD8+ T cells and DCs, which are related to acquired immunity, might also play important roles in this antitumor immune response. These results suggest that alpha-GalCer has a multifunctional role in modulation of the immune response.</p>\",\"PeriodicalId\":84998,\"journal\":{\"name\":\"Journal of immune based therapies and vaccines\",\"volume\":\"2 1\",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1476-8518-2-7\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of immune based therapies and vaccines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1476-8518-2-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immune based therapies and vaccines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1476-8518-2-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tumor-infiltrating effector cells of alpha-galactosylceramide-induced antitumor immunity in metastatic liver tumor.
BACKGROUND: alpha-Galactosylceramide (alpha-GalCer) can be presented by CD1d molecules of antigen-presenting cells, and is known to induce a potent NKT cell-dependent cytotoxic response against tumor cells. However, the main effector cells in alpha-GalCer-induced antitumor immunity are still controversial. METHODS: In order to elucidate the cell phenotype that plays the most important role in alpha-GalCer-induced antitumor immunity, we purified and analyzed tumor-infiltrating leukocytes (TILs) from liver metastatic nodules of a colon cancer cell line (Colon26), comparing alpha-GalCer- and control vehicle-treated mice. Flow cytometry was performed to analyze cell phenotype in TILs and IFN-gamma ELISA was performed to detect antigen-specific immune response. RESULTS: Flow cytometry analysis showed a significantly higher infiltration of NK cells (DX5+, T cell receptor alphabeta (TCR)-) into tumors in alpha-GalCer-treated mice compared to vehicle-treated mice. The DX5+TCR+ cell population was not significantly different between these two groups, indicating that these cells were not the main effector cells. Interestingly, the CD8+ T cell population was increased in TILs of alpha-GalCer-treated mice, and the activation level of these cells based on CD69 expression was higher than that in vehicle-treated mice. Moreover, the number of tumor-infiltrating dendritic cells (DCs) was increased in alpha-GalCer-treated mice. IFN-gamma ELISA showed stronger antigen-specific response in TILs from alpha-GalCer-treated mice compared to those from vehicle-treated mice, although the difference between these two groups was not significant. CONCLUSIONS: In alpha-GalCer-induced antitumor immunity, NK cells seem to be some of the main effector cells and both CD8+ T cells and DCs, which are related to acquired immunity, might also play important roles in this antitumor immune response. These results suggest that alpha-GalCer has a multifunctional role in modulation of the immune response.