低密度脂蛋白受体的结构、功能和突变。

Joep C Defesche
{"title":"低密度脂蛋白受体的结构、功能和突变。","authors":"Joep C Defesche","doi":"10.1055/s-2004-822993","DOIUrl":null,"url":null,"abstract":"<p><p>Uptake of cholesterol, mediated by the low-density lipoprotein (LDL)-receptor, plays a crucial role in lipoprotein metabolism. The LDL-receptor is responsible for the binding and subsequent cellular uptake of apolipoprotein B- and E-containing lipoproteins. To accomplish this, the receptor has to be transported from the site of synthesis, the membranes of the rough endoplasmatic reticulum (ER), through the Golgi apparatus, to its position on the surface of the cellular membrane. The translation of LDL-receptor messenger RNA into the polypeptide chain for the receptor protein takes place on the surface-bound ribosomes of the rough ER. Immature O-linked carbohydrate chains are attached to this integral precursor membrane protein. The molecular weight of the receptor at this stage is 120.000 d. The precursor-protein is transported from the rough ER to the Golgi apparatus, where the O-linked sugar chains are elongated until their final size is reached. The molecular weight has then increased to 160.000 d. The mature LDL-receptor is subsequently guided to the \"coated pits\" on the cell surface. These specialized areas of the cell membrane are rich in clathrin and interact with the LDL-receptor protein. Only here can the LDL-receptor bind LDL-particles. Within 3 to 5 minutes of its formation, the LDL-particle-receptor complex is internalized through endocytosis and is further metabolized through the receptor-mediated endocytosis pathway. Mutations in the gene coding for the LDL-receptor can interfere to a varying extent with all the different stages of the posttranslational processing, binding, uptake, and subsequent dissociation of the LDL-particle-LDL-receptor complex, but invariably the mutations lead to familial hypercholesterolemia. Thus, mutations in the LDL-receptor gene give rise to a substantially varying clinical expression of familial hypercholesterolemia.</p>","PeriodicalId":87139,"journal":{"name":"Seminars in vascular medicine","volume":"4 1","pages":"5-11"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1055/s-2004-822993","citationCount":"62","resultStr":"{\"title\":\"Low-density lipoprotein receptor--its structure, function, and mutations.\",\"authors\":\"Joep C Defesche\",\"doi\":\"10.1055/s-2004-822993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uptake of cholesterol, mediated by the low-density lipoprotein (LDL)-receptor, plays a crucial role in lipoprotein metabolism. The LDL-receptor is responsible for the binding and subsequent cellular uptake of apolipoprotein B- and E-containing lipoproteins. To accomplish this, the receptor has to be transported from the site of synthesis, the membranes of the rough endoplasmatic reticulum (ER), through the Golgi apparatus, to its position on the surface of the cellular membrane. The translation of LDL-receptor messenger RNA into the polypeptide chain for the receptor protein takes place on the surface-bound ribosomes of the rough ER. Immature O-linked carbohydrate chains are attached to this integral precursor membrane protein. The molecular weight of the receptor at this stage is 120.000 d. The precursor-protein is transported from the rough ER to the Golgi apparatus, where the O-linked sugar chains are elongated until their final size is reached. The molecular weight has then increased to 160.000 d. The mature LDL-receptor is subsequently guided to the \\\"coated pits\\\" on the cell surface. These specialized areas of the cell membrane are rich in clathrin and interact with the LDL-receptor protein. Only here can the LDL-receptor bind LDL-particles. Within 3 to 5 minutes of its formation, the LDL-particle-receptor complex is internalized through endocytosis and is further metabolized through the receptor-mediated endocytosis pathway. Mutations in the gene coding for the LDL-receptor can interfere to a varying extent with all the different stages of the posttranslational processing, binding, uptake, and subsequent dissociation of the LDL-particle-LDL-receptor complex, but invariably the mutations lead to familial hypercholesterolemia. Thus, mutations in the LDL-receptor gene give rise to a substantially varying clinical expression of familial hypercholesterolemia.</p>\",\"PeriodicalId\":87139,\"journal\":{\"name\":\"Seminars in vascular medicine\",\"volume\":\"4 1\",\"pages\":\"5-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1055/s-2004-822993\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in vascular medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-2004-822993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in vascular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-2004-822993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

低密度脂蛋白受体介导的胆固醇摄取在脂蛋白代谢中起着至关重要的作用。ldl受体负责载脂蛋白B和载脂蛋白e的结合和随后的细胞摄取。为了完成这一过程,受体必须从粗内质网(ER)的合成部位,通过高尔基体,运送到细胞膜表面的位置。低密度脂蛋白受体信使RNA转化为受体蛋白多肽链发生在粗内质网表面结合的核糖体上。未成熟的o链碳水化合物链附着在这个完整的前体膜蛋白上。在这个阶段,受体的分子量为12万d。前体蛋白从粗内质网转运到高尔基体,在那里,o链糖链被拉长,直到达到最终大小。然后分子量增加到160.000 d。成熟的ldl受体随后被引导到细胞表面的“包覆坑”。细胞膜的这些特殊区域富含网格蛋白,并与ldl受体蛋白相互作用。只有在这里,ldl受体才能结合ldl颗粒。ldl -颗粒-受体复合物在形成后3 ~ 5分钟内通过内吞作用内化,并通过受体介导的内吞作用途径进一步代谢。ldl -受体基因编码的突变可以不同程度地干扰ldl -颗粒- ldl -受体复合物的翻译后加工、结合、摄取和随后的解离的所有不同阶段,但突变总是导致家族性高胆固醇血症。因此,低密度脂蛋白受体基因的突变导致家族性高胆固醇血症的临床表现有很大差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-density lipoprotein receptor--its structure, function, and mutations.

Uptake of cholesterol, mediated by the low-density lipoprotein (LDL)-receptor, plays a crucial role in lipoprotein metabolism. The LDL-receptor is responsible for the binding and subsequent cellular uptake of apolipoprotein B- and E-containing lipoproteins. To accomplish this, the receptor has to be transported from the site of synthesis, the membranes of the rough endoplasmatic reticulum (ER), through the Golgi apparatus, to its position on the surface of the cellular membrane. The translation of LDL-receptor messenger RNA into the polypeptide chain for the receptor protein takes place on the surface-bound ribosomes of the rough ER. Immature O-linked carbohydrate chains are attached to this integral precursor membrane protein. The molecular weight of the receptor at this stage is 120.000 d. The precursor-protein is transported from the rough ER to the Golgi apparatus, where the O-linked sugar chains are elongated until their final size is reached. The molecular weight has then increased to 160.000 d. The mature LDL-receptor is subsequently guided to the "coated pits" on the cell surface. These specialized areas of the cell membrane are rich in clathrin and interact with the LDL-receptor protein. Only here can the LDL-receptor bind LDL-particles. Within 3 to 5 minutes of its formation, the LDL-particle-receptor complex is internalized through endocytosis and is further metabolized through the receptor-mediated endocytosis pathway. Mutations in the gene coding for the LDL-receptor can interfere to a varying extent with all the different stages of the posttranslational processing, binding, uptake, and subsequent dissociation of the LDL-particle-LDL-receptor complex, but invariably the mutations lead to familial hypercholesterolemia. Thus, mutations in the LDL-receptor gene give rise to a substantially varying clinical expression of familial hypercholesterolemia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信